[1]
|
World Health Organization. Avian influenza weekly update number 804. https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/avian-influenza/ai_20210806.pdf?Status=Master&sfvrsn=5f006f99_42. [2021-8-6].https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/avian-influenza/ai_20210806.pdf?Status=Master&sfvrsn=5f006f99_42 |
[2]
|
Sun HL, Pu J, Wei YD, Sun YP, Hu J, Liu LT, et al. Highly pathogenic avian influenza H5N6 viruses exhibit enhanced affinity for human type sialic acid receptor and in-contact transmission in model ferrets. J Virol 2016;90(14):6235 − 43. http://dx.doi.org/10.1128/JVI.00127-16CrossRef
|
[3]
|
Wang XL, Jiang H, Wu P, Uyeki TM, Feng LZ, Lai SJ, et al. Epidemiology of avian influenza a H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series. Lancet Infect Dis 2017;17(8):822 − 32. http://dx.doi.org/10.1016/S1473-3099(17)30323-7CrossRef
|
[4]
|
Wang J, Jiang LN, Ning CY, Yang YP, Chen M, Zhang C, et al. First outbreak of human infection with avian influenza A(H7N9) virus in Guangxi, China, 2016 to 2017. Chin Med J (Engl) 2019;132(16):1995 − 7. http://dx.doi.org/10.1097/CM9.0000000000000376CrossRef
|
[5]
|
Chutinimitkul S, van Riel D, Munster VJ, van den Brand JMA, Rimmelzwaan GF, Kuiken T, et al. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza a viruses with altered receptor specificity. J Virol 2010;84(13):6825 − 33. http://dx.doi.org/10.1128/JVI.02737-09CrossRef
|
[6]
|
Su Y, Yang HY, Zhang BJ, Jia HL, Tien P. Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Arch Virol 2008;153(12):2253 − 61. http://dx.doi.org/10.1007/s00705-008-0255-yCrossRef
|
[7]
|
Yang ZY, Wei CJ, Kong WP, Wu L, Xu L, Smith DF, et al. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 2007;317(5839):825 − 8. http://dx.doi.org/10.1126/science.1135165CrossRef
|
[8]
|
Wang WJ, Lu B, Zhou HL, Suguitan AL Jr, Cheng X, Subbarao K, et al. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol 2010;84(13):6570 − 7. http://dx.doi.org/10.1128/JVI.00221-10CrossRef
|
[9]
|
Bi YH, Chen QJ, Wang QL, Chen JJ, Jin T, Wong G, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe 2016;20(6):810 − 21. http://dx.doi.org/10.1016/j.chom.2016.10.022CrossRef
|
[10]
|
Bi YH, Mei K, Shi WF, Liu D, Yu XL, Gao ZM, et al. Two novel reassortants of avian influenza A (H5N6) virus in China. J Gen Virol 2015;96(Pt 5):975 − 81. http://dx.doi.org/10.1099/vir.0.000056CrossRef
|
[11]
|
Xiao CK, Xu JA, Lan Y, Huang ZP, Zhou LJ, Guo YX, et al. Five independent cases of human infection with avian influenza H5N6 — Sichuan Province, China, 2021. China CDC wkly 2021;3(36):751 − 6. http://dx.doi.org/10.46234/ccdcw2021.187CrossRef
|
[12]
|
Liu WJ, Wu Y, Bi YH, Shi WF, Wang DY, Shi Y, et al. Emerging HxNy influenza A viruses. Cold Spring Harb Perspect Med 2020;a038406. https://doi.org/10.1101/cshperspect.a038406 |
[13]
|
Fan SF, Deng GH, Song JS, Tian GB, Suo YB, Jiang YP, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 2009;384(1):28 − 32. http://dx.doi.org/10.1016/j.virol.2008.11.044CrossRef
|
[14]
|
Ip DKM, Liao QH, Wu P, Gao ZC, Cao B, Feng LZ, et al. Detection of mild to moderate influenza A/H7N9 infection by China's national sentinel surveillance system for influenza-like illness: case series. BMJ 2013;346:f3693. http://dx.doi.org/10.1136/bmj.f3693CrossRef
|
[15]
|
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. [2021-9-2].https://covid19.who.int/ |