[1] Alving CR. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine 2002;20 Suppl 3:S56-64. http://dx.doi.org/10.1016/S0264-410X(02)00174-3.
[2] Rhodes SJ, Knight GM, Kirschner DE, White RG, Evans TG. Dose finding for new vaccines: the role for immunostimulation/immunodynamic modelling. J Theor Biol 2019;465:51 − 5. https://doi.org/10.1016/j.jtbi.2019.01.017.
[3] Callegaro A, Karkada N, Aris E, Zahaf T. Vaccine clinical trials with dynamic borrowing of historical controls: two retrospective studies. Pharm Stat 2023;22(3):475 − 91. https://doi.org/10.1002/pst.2283.
[4] Riviere MK, Yuan Y, Jourdan JH, Dubois F, Zohar S. Phase I/II dose-finding design for molecularly targeted agent: Plateau determination using adaptive randomization. Stat Methods Med Res 2018;27(2):466 − 79. https://doi.org/10.1177/0962280216631763.
[5] Yan F, Thall PF, Lu KH, Gilbert MR, Yuan Y. Phase I-II clinical trial design: a state-of-the-art paradigm for dose finding. Ann Oncol 2018;29(3):694 − 9. https://doi.org/10.1093/annonc/mdx795.
[6] Yuan Y, Wu J, Gilbert MR. BOIN: a novel Bayesian design platform to accelerate early phase brain tumor clinical trials. Neuro Oncol Pract 2021;8(6):627 − 38. https://doi.org/10.1093/nop/npab035.
[7] Zhou YH, Lee JJ, Yuan Y. A utility-based Bayesian optimal interval (U-BOIN) phase I/II design to identify the optimal biological dose for targeted and immune therapies. Stat Med 2019;38(28):5299 − 316. https://doi.org/10.1002/sim.8361.
[8] Wang CG, Rosner GL, Roden RBS. A Bayesian design for phase I cancer therapeutic vaccine trials. Stat Med 2019;38(7):1170 − 89. https://doi.org/10.1002/sim.8021.
[9] Lin RT, Yin GS. STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials. Stat Med 2017;36(26):4106 − 20. https://doi.org/10.1002/sim.7428.
[10] Hoering A, Mitchell A, LeBlanc M, Crowley J. Early phase trial design for assessing several dose levels for toxicity and efficacy for targeted agents. Clin Trials 2013;10(3):422 − 9. https://doi.org/10.1177/1740774513480961.
[11] Simon R. Clinical trial designs for therapeutic cancer vaccines. In: Khleif SN, editor. Tumor immunology and cancer vaccines. New York: Springer. 2005; p. 339-50. http://dx.doi.org/10.1007/0-387-27545-2_14.
[12] Wages NA, Slingluff CL Jr. Flexible phase I-II design for partially ordered regimens with application to therapeutic cancer vaccines. Stat Biosci 2020;12(2):104 − 23. https://doi.org/10.1007/s12561-019-09245-3.
[13] Gelman A, Jakulin A, Pittau MG, Su YS. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2008;2(4):1360 − 83. https://doi.org/10.1214/08-aoas191.
[14] Wassil J, Sisti M, Fairman J, Davis M, Fierro C, Bennett S, et al. Evaluating the safety, tolerability, and immunogenicity of a 24-valent pneumococcal conjugate vaccine (VAX-24) in healthy adults aged 18 to 64 years: a phase 1/2, double-masked, dose-finding, active-controlled, randomised clinical trial. Lancet Infect Dis 2024;24(3):308 − 18. https://doi.org/10.1016/S1473-3099(23)00572-8.
[15] Kurzrock R, Lin CC, Wu TC, Hobbs BP, Pestana RC, Hong DS. Moving beyond 3+3: the future of clinical trial design. Am Soc Clin Oncol Educ Book 2021;41:e133 − 44. https://doi.org/10.1200/EDBK_319783.