[1]
|
Boots AW, van Berkel JJBN, Dallinga JW, Smolinska A, Wouters EF, van Schooten FJ. The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res 2012;6(2):027108. https://doi.org/10.1088/1752-7155/6/2/027108CrossRef
|
[2]
|
Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 2003;18(10):1209 − 18. https://doi.org/10.1016/S0956-5663(03)00086-1CrossRef
|
[3]
|
Li ZT, Zeng PY, Chen ZM, Guan WJ, Wang T, Lin Y, et al. Exhaled volatile organic compounds for identifying patients with chronic pulmonary aspergillosis. Front Med 2021;8:720119. https://doi.org/10.3389/FMED.2021.720119CrossRef
|
[4]
|
Yamada YI, Yamada G, Otsuka M, Nishikiori H, Ikeda K, Umeda Y, et al. Volatile organic compounds in exhaled breath of idiopathic pulmonary fibrosis for discrimination from healthy subjects. Lung 2017;195(2):247 − 54. https://doi.org/10.1007/s00408-017-9979-3CrossRef
|
[5]
|
Zou YC, Wang Y, Jiang ZL, Zhou Y, Chen Y, Hu YJ, et al. Breath profile as composite biomarkers for lung cancer diagnosis. Lung Cancer 2021;154:206 − 13. https://doi.org/10.1016/j.lungcan.2021.01.020CrossRef
|
[6]
|
Gao R, Peng FD, He YZ, Feng J, Liu WB, Yu LJ, et al. Determination of 27 volatile organic compounds in exhaled breath bythermal desorption-gas chromatography-mass spectrometry. J Environ Occup Med 2024;41(1):96 − 102. https://doi.org/10.11836/JEOM23283CrossRef
|
[7]
|
Foster WM, Jiang L, Stetkiewicz PT, Risby TH. Breath isoprene: temporal changes in respiratory output after exposure to ozone. J Appl Physiol (1985) 1996;80(2):706-10. http://dx.doi.org/10.1152/jappl.1996.80.2.706. |
[8]
|
Jalali M, Zare Sakhvidi MJ, Bahrami A, Berijani N, Mahjub H. Oxidative stress biomarkers in exhaled breath of workers exposed to crystalline silica dust by SPME-GC-MS. J Res Health Sci 2016;16(3):153 − 61. |
[9]
|
Yang HY, Shie RH, Chang CJ, Chen PC. Development of breath test for pneumoconiosis: a case-control study. Respir Res 2017;18(1):178. https://doi.org/10.1186/s12931-017-0661-3CrossRef
|
[10]
|
Collard HR, King Jr TE, Bartelson BB, Vourlekis JS, Schwarz MI, Brown KK. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2003;168(5):538 − 42. https://doi.org/10.1164/rccm.200211-1311OCCrossRef
|
[11]
|
Takei R, Brown KK, Yamano Y, Kataoka K, Yokoyama T, Matsuda T, et al. Prevalence and prognosis of chronic fibrosing interstitial lung diseases with a progressive phenotype. Respirology 2022;27(5):333 − 40. https://doi.org/10.1111/resp.14245CrossRef
|
[12]
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021;15(3):034001. https://doi.org/10.1088/1752-7163/abf1d0CrossRef
|
[13]
|
van der Schee MP, Paff T, Brinkman P, van Aalderen WMC, Haarman EG, Sterk PJ. Breathomics in lung disease. Chest 2015;147(1):224 − 31. https://doi.org/10.1378/chest.14-0781CrossRef
|
[14]
|
Magnano MC, Ahmed W, Wang R, Bergant Marušič M, Fowler SJ, White IR. Exhaled volatile organic compounds and respiratory disease: recent progress and future outlook. TrAC Trends Anal Chem 2024;176:117739. https://doi.org/10.1016/j.trac.2024.117739CrossRef
|
[15]
|
Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Rahbari-Oskoui F. Increased oxidative stress in younger as well as in older humans. Clin Chim Acta 2003;328(1-2):83 − 6. https://doi.org/10.1016/S0009-8981(02)00380-7CrossRef
|