| [1] | Peng ZX, Hu Y, Ye ZH, Deng J, Yang DJ, Xu J, et al. One health approach of enterococcal population structure and antibacterial resistance along the food chain — four PLADs, China, 2015-2022. China CDC Wkly 2024;6(47):1223 − 31. https://doi.org/10.46234/ccdcw2024.246. |
| [2] | Cattoir V. The multifaceted lifestyle of enterococci: genetic diversity, ecology and risks for public health. Curr Opin Microbiol 2022;65:73 − 80. https://doi.org/10.1016/j.mib.2021.10.013. |
| [3] | Choi DG, Baek JH, Han DM, Khan SA, Jeon CO. Comparative pangenome analysis of Enterococcus faecium and Enterococcus lactis provides new insights into the adaptive evolution by horizontal gene acquisitions. BMC Genomics 2024;25(1):28. https://doi.org/10.1186/s12864-023-09945-7. |
| [4] | Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A, Mazumdar V, et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. mBio 2013;4(4):e00534 − 13. https://doi.org/10.1128/mBio.00534-13. |
| [5] | Belloso Daza MV, Cortimiglia C, Bassi D, Cocconcelli PS. Genome-based studies indicate that the Enterococcus faecium clade b strains belong to Enterococcus lactis species and lack of the hospital infection associated markers. Int J Syst Evol Microbiol 2021;71(8):004948. https://doi.org/10.1099/ijsem.0.004948. |
| [6] | Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020;70(1):e102. https://doi.org/10.1002/cpbi.102. |
| [7] | Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018;9(1):5114. https://doi.org/10.1038/s41467-018-07641-9. |
| [8] | McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57(7):3348 − 57. https://doi.org/10.1128/AAC.00419-13. |
| [9] | Chen LH, Yang J, Yu J, Yao ZJ, Sun LL, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33(Database issue):D325-8. http://dx.doi.org/10.1093/nar/gki008. |
| [10] | Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 2021;76(1):101 − 9. https://doi.org/10.1093/jac/dkaa390. |
| [11] | Carattoli A, Hasman H. PlasmidFinder and in silico pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). In: de la Cruz F, editor. Horizontal gene transfer: methods and protocols. New York: Humana. 2020; p. 285-94. http://dx.doi.org/10.1007/978-1-4939-9877-7_20. |
| [12] | Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015;43(3):e15. https://doi.org/10.1093/nar/gku1196. |
| [13] | Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010;5(3):e9490. https://doi.org/10.1371/journal.pone.0009490. |
| [14] | Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31(22):3691 − 3. https://doi.org/10.1093/bioinformatics/btv421. |
| [15] | Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016;17(1):238. https://doi.org/10.1186/s13059-016-1108-8. |
| [16] | Kim E, Yang SM, Kim HJ, Kim HY. Differentiating between Enterococcusfaecium and Enterococcuslactis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Foods 2022;11(7):1046. https://doi.org/10.3390/foods11071046. |
| [17] | Nagarajan R, Hendrickx APA, Ponnuraj K. Cloning, expression, purification, crystallization and preliminary crystallographic analysis of the N-terminal domain of serine glutamate repeat A (SgrA) protein from Enterococcus faecium. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013;69(Pt 4):441-4. http://dx.doi.org/10.1107/S1744309113005745. |