[1] Wang XM, Liu SW, Zhang JL. A new look at roles of the cryosphere in sustainable development. Adv Climate Change Res 2019;10(2):124 − 31. https://doi.org/10.1016/j.accre.2019.06.005.
[2] Zheng GX, Allen SK, Bao AM, Ballesteros-Cánovas JA, Huss M, Zhang GQ, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat Climate Change 2021;11(5):411 − 7. https://doi.org/10.1038/s41558-021-01028-3.
[3] Veh G, Korup O, Walz A. Hazard from Himalayan glacier lake outburst floods. Proc Natl Acad Sci USA 2020;117(2):907 − 12. https://doi.org/10.1073/pnas.1914898117.
[4] Zhang JK, Tian WS, Chipperfield MP, Xie F, Huang JL. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat Climate Change 2016;6(12):1094 − 9. https://doi.org/10.1038/nclimate3136.
[5] Shepherd TG. Effects of a warming Arctic. Science 2016;353(6303):989 − 90. https://doi.org/10.1126/science.aag2349.
[6] Bailey H, Hubbard A, Klein ES, Mustonen KR, Akers PD, Marttila H, et al. Arctic sea-ice loss fuels extreme European snowfall. Nat Geosci 2021;14(5):283 − 8. https://doi.org/10.1038/s41561-021-00719-y.
[7] Mallet RT, Burtscher M, Cogo A. Editorial: climate change in mountainous areas and related health effects. Front Physiol 2021;12:768112. https://doi.org/10.3389/fphys.2021.768112.
[8] Milner AM, Khamis K, Battin TJ, Brittain JE, Barrand NE, Füreder L, et al. Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci USA 2017;114(37):9770 − 8. https://doi.org/10.1073/pnas.1619807114.
[9] The GlaMBIE Team. Community estimate of global glacier mass changes from 2000 to 2023. Nature 2025;639(8054):382 − 8. https://doi.org/10.1038/s41586-024-08545-z.
[10] Hugonnet R, Mcnabb R, Berthier E, Menounos B, Nuth C, Girod L, et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021;592(7856):726 − 31. https://doi.org/10.1038/s41586-021-03436-z.
[11] Bhattacharya A, Bolch T, Mukherjee K, King O, Menounos B, Kapitsa V, et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat Commun 2021;12(1):4133. https://doi.org/10.1038/s41467-021-24180-y.
[12] Pulliainen J, Luojus K, Derksen C, Mudryk L, Lemmetyinen J, Salminen M, et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 2020;581(7808):294 − 8. https://doi.org/10.1038/s41586-020-2258-0.
[13] Carrer M, Dibona R, Prendin AL, Brunetti M. Recent waning snowpack in the Alps is unprecedented in the last six centuries. Nat Climate Change 2023;13(2):155 − 60. https://doi.org/10.1038/s41558-022-01575-3.
[14] Han JT, Liu ZW, Woods R, McVicar TR, Yang DW, Wang TH, et al. Streamflow seasonality in a snow-dwindling world. Nature 2024;629(8014):1075 − 81. https://doi.org/10.1038/s41586-024-07299-y.
[15] Kraaijenbrink PDA, Stigter EE, Yao TD, Immerzeel WW. Climate change decisive for Asia’s snow meltwater supply. Nat Climate Change 2021;11(7):591 − 7. https://doi.org/10.1038/s41558-021-01074-x.
[16] Wieder WR, Kennedy D, Lehner F, Musselman KN, Rodgers KB, Rosenbloom N, et al. Pervasive alterations to snow-dominated ecosystem functions under climate change. Proc Natl Acad Sci USA 2022;119(30):e2202393119. https://doi.org/10.1073/pnas.2202393119.
[17] Qin Y, Abatzoglou JT, Siebert S, Huning LS, AghaKouchak A, Mankin JS, et al. Agricultural risks from changing snowmelt. Nat Climate Change 2020;10(5):459 − 65. https://doi.org/10.1038/s41558-020-0746-8.
[18] Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, et al. Permafrost is warming at a global scale. Nat Commun 2019;10(1):264. https://doi.org/10.1038/s41467-018-08240-4.
[19] Smith SL, O’Neill HB, Isaksen K, Noetzli J, Romanovsky VE. The changing thermal state of permafrost. Nat Rev Earth Environ 2022;3(1):10 − 23. https://doi.org/10.1038/s43017-021-00240-1.
[20] Schaefer K, Elshorbany Y, Jafarov E, Schuster PF, Striegl RG, Wickland KP, et al. Potential impacts of mercury released from thawing permafrost. Nat Commun 2020;11(1):4650. https://doi.org/10.1038/s41467-020-18398-5.
[21] Intergovernmental Panel on Climate Change (IPCC). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. 2023. http://dx.doi.org/10.1017/9781009157896.
[22] Cohen J, Agel L, Barlow M, Garfinkel CI, White I. Linking Arctic variability and change with extreme winter weather in the United States. Science 2021;373(6559):1116 − 21. https://doi.org/10.1126/science.abi9167.
[23] Reichstein M, Riede F, Frank D. More floods, fires and cyclones — plan for domino effects on sustainability goals. Nature 2021;592(7854):347 − 9. https://doi.org/10.1038/d41586-021-00927-x.
[24] Romanello M, Walawender M, Hsu SC, Moskeland A, Palmeiro-Silva Y, Scamman D, et al. The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action. Lancet 2024;404(10465):1847 − 96. https://doi.org/10.1016/S0140-6736(24)01822-1.
[25] Yang ZY, Huang WZ, McKenzie JE, Xu RB, Yu P, Ye TT, et al. Mortality risks associated with floods in 761 communities worldwide: time series study. BMJ 2023;383:e075081. https://doi.org/10.1136/bmj-2023-075081.
[26] Kääb A, Leinss S, Gilbert A, Bühler Y, Gascoin S, Evans SG, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat Geosci 2018;11(2):114 − 20. https://doi.org/10.1038/s41561-017-0039-7.
[27] Cook KL, Andermann C, Gimbert F, Adhikari BR, Hovius N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 2018;362(6410):53 − 7. https://doi.org/10.1126/science.aat4981.
[28] Shugar DH, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021;373(6552):300 − 6. https://doi.org/10.1126/science.abh4455.
[29] Zeng HL, Xiao C, Chen XY, Ye DX. State of China’s climate in 2018. Atmos Oceanic Sci Lett 2019;12(5):349 − 54. https://doi.org/10.1080/16742834.2019.1632147.
[30] Gao Y, Huang WZ, Zhao Q, Ryti N, Armstrong B, Gasparrini A, et al. Global, regional, and national burden of mortality associated with cold spells during 2000-19: a three-stage modelling study. Lancet Planet Health 2024;8(2):e108 − 16. https://doi.org/10.1016/S2542-5196(23)00277-2.
[31] Waldrop MP, Chabot CL, Liebner S, Holm S, Snyder MW, Dillon M, et al. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients. ISME J 2023;17(8):1224 − 35. https://doi.org/10.1038/s41396-023-01429-6.
[32] Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G, Westermann S. An observation-based constraint on permafrost loss as a function of global warming. Nat Climate Change 2017;7(5):340 − 4. https://doi.org/10.1038/nclimate3262.
[33] Wu RN, Trubl G, Taş N, Jansson JK. Permafrost as a potential pathogen reservoir. One Earth 2022;5(4):351 − 60. https://doi.org/10.1016/j.oneear.2022.03.010.
[34] Mackelprang R, Barbato RA, Ramey AM, Schütte UME, Waldrop MP. Cooling perspectives on the risk of pathogenic viruses from thawing permafrost. mSystems 2025;10(2):e4224. https://doi.org/10.1128/msystems.00042-24.
[35] Liskova EA, Egorova IY, Selyaninov YO, Razheva IV, Gladkova NA, Toropova NN, et al. Reindeer anthrax in the Russian arctic, 2016: climatic determinants of the outbreak and vaccination effectiveness. Front Vet Sci 2021;8:668420. https://doi.org/10.3389/fvets.2021.668420.
[36] Ezhova E, Orlov D, Suhonen E, Kaverin D, Mahura A, Gennadinik V, et al. Climatic factors influencing the anthrax outbreak of 2016 in Siberia, Russia. EcoHealth 2021;18(2):217 − 28. https://doi.org/10.1007/s10393-021-01549-5.
[37] Stone R. Is live smallpox lurking in the arctic? Science 2002;295(5562):2002. http://dx.doi.org/10.1126/science.295.5562.2002.
[38] El-Sayed A, Kamel M. Future threat from the past. Environ Sci Pollut Res Int 2021;28(2):1287 − 91. https://doi.org/10.1007/s11356-020-11234-9.
[39] Langer M, von Deimling TS, Westermann S, Rolph R, Rutte R, Antonova S, et al. Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination. Nat Commun 2023;14(1):1721. https://doi.org/10.1038/s41467-023-37276-4.
[40] Dastoor A, Angot H, Bieser J, Christensen JH, Douglas TA, Heimbürger-Boavida LE, et al. Arctic mercury cycling. Nat Rev Earth Environ 2022;3(4):270 − 86. https://doi.org/10.1038/s43017-022-00269-w.
[41] Basu N, Abass K, Dietz R, Krümmel E, Rautio A, Weihe P. The impact of mercury contamination on human health in the Arctic: a state of the science review. Sci Total Environ 2022;831:154793. https://doi.org/10.1016/j.scitotenv.2022.154793.
[42] Burrows K, Denckla CA, Hahn J, Schiff JE, Okuzono SS, Randriamady H, et al. A systematic review of the effects of chronic, slow-onset climate change on mental health. Nat Mental Health 2024;2(2):228 − 43. https://doi.org/10.1038/s44220-023-00170-5.
[43] Wu Y, Wen B, Gasevic D, Patz JA, Haines A, Ebi KL, et al. Climate change, floods, and human health. N Engl J Med 2024;391(20):1949 − 58. https://doi.org/10.1056/NEJMsr2402457.
[44] Zhang Q, Shen ZX, Pokhrel Y, Farinotti D, Singh VP, Xu CY, et al. Oceanic climate changes threaten the sustainability of Asia’s water tower. Nature 2023;615(7950):87 − 93. https://doi.org/10.1038/s41586-022-05643-8.
[45] Mirón IJ, Linares C, Díaz J. The influence of climate change on food production and food safety. Environ Res 2023;216:114674. https://doi.org/10.1016/j.envres.2022.114674.
[46] Lutz AF, Immerzeel WW, Siderius C, Wijngaard RR, Nepal S, Shrestha AB, et al. South Asian agriculture increasingly dependent on meltwater and groundwater. Nat Climate Change 2022;12(6):566 − 73. https://doi.org/10.1038/s41558-022-01355-z.
[47] Biemans H, Siderius C, Lutz AF, Nepal S, Ahmad B, Hassan T, et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat Sustain 2019;2(7):594 − 601. https://doi.org/10.1038/s41893-019-0305-3.
[48] Young SL, Bethancourt HJ, Cafiero C, Gaitán-Rossi P, Koo-Oshima S, McDonnell R, et al. Acknowledging, measuring and acting on the importance of water for food and nutrition. Nat Water 2023;1(10):825 − 8. https://doi.org/10.1038/s44221-023-00146-w.
[49] Choudhary N, Brewis A, Beresford M, Workman C, Wutich A. Water, economic systems, and mental health: a review of theorized relationships. CABI Rev 2022. http://dx.doi.org/10.1079/cabireviews2022;17:42.
[50] Gallegos D. Effects of food and nutrition insecurity on global health. N Engl J Med 2025;392(7):686 − 97. https://doi.org/10.1056/NEJMra2406458.
[51] Wei YQ, Li J, Luo DL, Tang XJ, Wu ZH, Wang XF. Risks and sustainability of outdoor ski resorts in China under climate changes. npj Climate Atmos Sci 2025;8(1):26. https://doi.org/10.1038/s41612-025-00917-0.
[52] François H, Samacoïts R, Bird DN, Köberl J, Prettenthaler F, Morin S. Climate change exacerbates snow-water-energy challenges for European ski tourism. Nat Climate Change 2023;13(9):935 − 42. https://doi.org/10.1038/s41558-023-01759-5.
[53] Wang SJ, Zhou LY. Integrated impacts of climate change on glacier tourism. Adv Climate Change Res 2019;10(2):71 − 9. https://doi.org/10.1016/j.accre.2019.06.006.
[54] Adger WN, Barnett J, Heath S, Jarillo S. Climate change affects multiple dimensions of well-being through impacts, information and policy responses. Nat Hum Behav 2022;6(11):1465 − 73. https://doi.org/10.1038/s41562-022-01467-8.
[55] Cannon AJ. Twelve months at 1.5 °C signals earlier than expected breach of Paris Agreement threshold. Nat Climate Change 2025;15(3):266-9. http://dx.doi.org/10.1038/s41558-025-02247-8.