[1] DSMZ-Deutsche sammlung von mikroorganismen und zellkulturen. 2024. https://www.bionity.com/de/lexikon/Deutsche_Sammlung_von_Mikroorganismen_und_Zellkulturen.html.
[2] Alisjahbana B, Debora J, Susandi E, Darmawan G. Chromobacterium violaceum: a review of an unexpected scourge. Int J Gen Med 2021;14:3259 − 70. https://doi.org/10.2147/IJGM.S272193.
[3] Han XY, Han FS, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol 2008;58(Pt 6):1398-403. http://dx.doi.org/10.1099/ijs.0.64681-0.
[4] Iwamoto K, Yamamoto M, Yamamoto A, Sai T, Mukai T, Miura N, et al. Meningitis caused by Chromobacterium haemolyticum suspected to be derived from a canal in Japan: a case report. J Med Case Rep 2023;17(1):171. https://doi.org/10.1186/s13256-023-03913-1.
[5] CLSI. CLSI M100 Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI, 2023. https://clsi.org/about/news/clsi-publishes-m100-performance-standards-for-antimicrobial-susceptibility-testing-33rd-edition/.
[6] Teixeira P, Tacão M, Baraúna RA, Silva A, Henriques I. Genomic analysis of Chromobacterium haemolyticum: insights into the species resistome, virulence determinants and genome plasticity. Mol Genet Genomics 2020;295(4):1001 − 12. https://doi.org/10.1007/s00438-020-01676-8.
[7] Blanco-Míguez A, Beghini F, Cumbo F, Mciver LJ, Thompson KN, Zolfo M, et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotech 2023;41(11):1633 − 44. https://doi.org/10.1038/s41587-023-01688-w.
[8] Pei YH, Wei B, Huang HR, Wang YN, Xu XB. Global population structure and genomic insights into Chromobacterium violaceum of human invasive lethal infection and non-human origins. J Infect 2024;89(6):106332. https://doi.org/10.1016/j.jinf.2024.106332.
[9] Wang YN, Liu Y, Lyu N, Li ZY, Ma SF, Cao DM, et al. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. Natl Sci Rev 2023;10(3):nwac269. https://doi.org/10.1093/nsr/nwac269.
[10] Wang YN, Xu XB, Jia SL, Qu MQ, Pei YH, Qiu SF, et al. A global atlas and drivers of antimicrobial resistance in Salmonella during 1900-2023. Nat Commun 2025;16(1):4611. https://doi.org/10.1038/s41467-025-59758-3.
[11] Wang YN, Xu XB, Zhu BL, Lyu N, Liu Y, Ma SF, et al. Genomic analysis of almost 8,000 Salmonella genomes reveals drivers and landscape of antimicrobial resistance in China. Microbiol Spectr 2023;11(6):e0208023. https://doi.org/10.1128/spectrum.02080-23.
[12] Lv PP, Pei YH, Jiang Y, Wang Q, Liu Y, Qu MQ, et al. Genomic insights into antibiotic-resistant non-typhoidal Salmonella isolates from outpatients in Minhang District in Shanghai. Commun Med 2025;5(1):228. https://doi.org/10.1038/s43856-025-00950-3.
[13] World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. https://www.who.int/publications/i/item/9789240093461.
[14] Ma YY, Chen P, Mo Y, Xiao YH. WHO revised bacterial priority pathogens list to encourage global actions to combat AMR. hLife 2024;2(12):607 − 10. https://doi.org/10.1016/j.hlife.2024.10.003.
[15] Xiao YH, Nishijima T. Status and challenges of global antimicrobial resistance control: a dialogue between Professors Yonghong Xiao and Takeshi Nishijima. hLife 2024;2(2):47 − 9. https://doi.org/10.1016/j.hlife.2023.11.004.
[16] Gudeta DD, Bortolaia V, Jayol A, Poirel L, Nordmann P, Guardabassi L. Chromobacterium spp. harbour Ambler class A β-lactamases showing high identity with KPC. J Antimicrob Chemother 2016;71(6):1493 − 6. https://doi.org/10.1093/jac/dkw020.