| [1] | Li YJ, Yang YF, Zhou YJ, Zhang RH, Liu CW, Liu H, et al. Estimating the burden of foodborne gastroenteritis due to nontyphoidal Salmonella enterica, Shigella and Vibrio parahaemolyticus in China. PLoS One 2022;17(11):e0277203. https://doi.org/10.1371/journal.pone.0277203. |
| [2] | European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union One Health 2018 zoonoses report. EFSA J 2019;17(12):e05926. https://doi.org/10.2903/j.efsa.2019.5926. |
| [3] | Ido N, Lee KI, Iwabuchi K, Izumiya H, Uchida I, Kusumoto M, et al. Characteristics of Salmonella enterica serovar 4,[5],12:i:- as a monophasic variant of serovar Typhimurium. PLoS One 2014;9(8):e104380. https://doi.org/10.1371/journal.pone.0104380. |
| [4] | Sun HH, Wan YP, Du PC, Bai L. The epidemiology of monophasic Salmonella typhimurium. Foodborne Pathog Dis 2020;17(2):87 − 97. https://doi.org/10.1089/fpd.2019.2676. |
| [5] | European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 2017;15(12):e05077. https://doi.org/10.2903/j.efsa.2017.5077. |
| [6] | Centers for Disease Control and Prevention. National enteric disease surveillance: Salmonella annual report, 2016. Atlanta (GA): Centers for Disease Control and Prevention; 2018. https://stacks.cdc.gov/view/cdc/58450. |
| [7] | Yan MY, Kan B. Establishment of multi-sector collaborative mechanism and surveillance network for Salmonella infection outbreak response and control. Chin J Epidemiol 2022;43(7):996 − 1001. https://doi.org/10.3760/cma.j.cn112338-20220523-00449. |
| [8] | Chen JQ, Huang LL, An HL, Wang ZN, Kang XM, Yin R, et al. One Health approach probes zoonotic non-typhoidal Salmonella infections in China: a systematic review and meta-analysis. J Glob Health 2024;14:04256. https://doi.org/10.7189/jogh.14.04256. |
| [9] | World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Geneva: World Health Organization; 2017. https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12. |
| [10] | World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. https://www.who.int/publications/i/item/9789240093461. |
| [11] | Elnekave E, Hong S, Mather AE, Boxrud D, Taylor AJ, Lappi V, et al. Salmonella enterica serotype 4,[5],12:i:- in swine in the United States Midwest: an emerging multidrug-resistant clade. Clin Infect Dis 2018;66(6):877 − 85. https://doi.org/10.1093/cid/cix909. |
| [12] | Elnekave E, Hong SL, Lim S, Boxrud D, Rovira A, Mather AE, et al. Transmission of multidrug-resistant Salmonella enterica subspecies enterica 4,[5],12:i:- sequence type 34 between Europe and the United States. Emerg Infect Dis 2020;26(12):3034 − 8. https://doi.org/10.3201/eid2612.200336. |
| [13] | Ingle DJ, Ambrose RL, Baines SL, Duchene S, Gonçalves da Silva A, Lee DYJ, et al. Evolutionary dynamics of multidrug resistant Salmonella enterica serovar 4,[5],12:i:- in Australia. Nat Commun 2021;12(1):4786. https://doi.org/10.1038/s41467-021-25073-w. |
| [14] | Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014;15(11):524. https://doi.org/10.1186/s13059-014-0524-x. |
| [15] | Wang YN, Xu XB, Zhu BL, Lyu N, Liu Y, Ma SF, et al. Genomic analysis of almost 8,000 Salmonella genomes reveals drivers and landscape of antimicrobial resistance in China. Microbiol Spectr 2023;11(6):e0208023. http://dx.doi.org/10.1128/spectrum.02080-23. |
| [16] | Wang YN, Xu XB, Jia SL, Qu MQ, Pei YH, Qiu SF, et al. A global atlas and drivers of antimicrobial resistance in Salmonella during 1900-2023. Nat Commun 2025;16(1):4611 https://doi.org/10.1038/s41467-025-59758-3. |
| [17] | Allel K, Day L, Hamilton A, Lin L, Furuya-Kanamori L, Moore CE, et al. Global antimicrobial-resistance drivers: an ecological country-level study at the human-animal interface. Lancet Planet Health 2023;7(4):e291 − 303. https://doi.org/10.1016/S2542-5196(23)00026-8. |
| [18] | McGough SF, MacFadden DR, Hattab MW, Mølbak K, Santillana M. Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000 and 2016. Euro Surveill 2020;25(45):1900414. https://doi.org/10.2807/1560-7917.ES.2020.25.45.1900414. |
| [19] | MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nat Clim Chang 2018;8(6):510 − 4. https://doi.org/10.1038/s41558-018-0161-6. |
| [20] | Mendes IF, Completo S, Vieira de Carvalho R, Jacinto S, Schäfer S, Correia P, et al. Salmonellosis in children at a portuguese hospital: a retrospective study. Acta Med Port 2023;36(2):96 − 104. https://doi.org/10.20344/amp.18906. |
| [21] | Li TY, Qiang N, Bao YJ, Li YX, Zhao S, Chong KC, et al. Global burden of enteric infections related foodborne diseases, 1990-2021: findings from the Global Burden of Disease Study 2021. Sci One Health 2024;3:100075. https://doi.org/10.1016/j.soh.2024.100075. |
| [22] | Luo M, Wang LY, Zhou CY, Hou XJ, Ling ZS, Wen YJ, et al. Antimicrobial resistance and molecular genetic characteristics of monophasic Salmonella Typhimurium carried by healthy population in Yulin, Guangxi Zhuang Autonomous Region. Dis Surveil 2023;38(6):714 − 21. https://doi.org/10.3784/jbjc.202303070086. |
| [23] | Wu LL, Qiu ZY, Li YL, Liao XG, Han ZW, Zhang XL. Comparative analysis of antimicrobial resistance of Salmonella enterica serovar Typhimurium and its monophasic variant in food and clinical patients in He'nan province from 2015 to 2022. Chin J Food Hyg 2024;36(6):646 − 52. https://doi.org/10.13590/j.cjfh.2024.06.002. |
| [24] | Chung The H, Pham P, Ha Thanh T, Phuong LVK, Yen NP, Le SNH, et al. Multidrug resistance plasmids underlie clonal expansions and international spread of Salmonella enterica serotype 1,4,[5],12:i:- ST34 in Southeast Asia. Commun Biol 2023;6(1):1007. https://doi.org/10.1038/s42003-023-05365-1. |
| [25] | Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR, Connor T, et al. Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005-2010. Emerg Infect Dis 2016;22(4):617 − 24. https://doi.org/10.3201/eid2204.150531. |
| [26] | Biswas S, Li Y, Elbediwi M, Yue M. Emergence and dissemination of mcr-carrying clinically relevant Salmonella Typhimurium monophasic clone ST34. Microorganisms 2019;7(9):298. https://doi.org/10.3390/microorganisms7090298. |
| [27] | Savard P, Gopinath R, Zhu WM, Kitchel B, Rasheed JK, Tekle T, et al. First NDM-positive Salmonella sp. strain identified in the United States. Antimicrob Agents Chemother 2011;55:5957 − 8. https://doi.org/10.1128/AAC.05719-11. |
| [28] | Huang JW, Wang MH, Ding H, Ye MP, Hu FP, Guo QL, et al. New Delhi metallo-β-lactamase-1 in carbapenem-resistant Salmonella strain, China. Emerg Infect Dis 2013;19(12):2049 − 51. https://doi.org/10.3201/eid1912.130051. |
| [29] | Yang L, Hu XF, Xu XB, Yang CJ, Xie J, Hao RZ, et al. Salmonella enterica serovar Typhimurium ST34 co-expressing blaNDM-5 and blaCTX-M-55 isolated in China. Emerg Microbes Infect 2017;6(7):e61. https://doi.org/10.1038/emi.2017.48. |
| [30] | Wang W, Peng ZX, Baloch Z, Hu YJ, Xu J, Zhang WH, et al. Genomic characterization of an extensively-drug resistance Salmonella enterica serotype Indiana strain harboring blaNDM-1 gene isolated from a chicken carcass in China. Microbiol Res 2017;204:48 − 54. https://doi.org/10.1016/j.micres.2017.07.006. |
| [31] | Huang JW, Deng SS, Ren JM, Tu JF, Ye MP, Wang MG. Characterization of a blaNDM-1-harboring plasmid from a Salmonella enterica clinical isolate in China. Mol Med Rep 2017;16(2):1087 − 92. https://doi.org/10.3892/mmr.2017.6733. |
| [32] | Tan SH, Li XC, Lu B, Lin Y, Cai YB, He J, et al. Genomic insights into the first emergence of blaNDM-5-carrying carbapenem-resistant Salmonella enterica serovar London strain in China. Infect Drug Resist 2024;17:1781 − 90. https://doi.org/10.2147/IDR.S458625. |
| [33] | Deng LM, Lv LC, Tu JY, Yue C, Bai YM, He XT, et al. Clonal spread of blaNDM-1-carrying Salmonella enterica serovar Typhimurium clone ST34 and wide spread of IncHI2/ST3-blaNDM-5 plasmid in China. J Antimicrob Chemother 2024;79(8):1900 − 9. https://doi.org/10.1093/jac/dkae178. |
| [34] | Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbé B, de Block T, et al. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun 2019;10(1):4280. https://doi.org/10.1038/s41467-019-11844-z. |
| [35] | Nelson JM, Chiller TM, Powers JH, Angulo FJ. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin Infect Dis 2007;44(7):977 − 80. https://doi.org/10.1086/512369. |
| [36] | Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16(2):161 − 8. https://doi.org/10.1016/S1473-3099(15)00424-7. |
| [37] | Zhang ZF, Tian XR, Shi CL. Global spread of mcr-producing Salmonella enterica isolates. Antibiotics 2022;11(8):998. https://doi.org/10.3390/antibiotics11080998. |
| [38] | Sheng HJ, Suo J, Wang XQ, Lü ZX, Wang SY, Yang QP, et al. Global prevalence and transmission of the mcr-9 in Salmonella: a genomic study with insights from Salmonella enterica serovar Thompson isolated from poultry food in China. Food Res Int 2025;202:115763. https://doi.org/10.1016/j.foodres.2025.115763. |