[1] Lancefield RC. A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 1933;57(4):571 − 95. https://doi.org/10.1084/jem.57.4.571.
[2] Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2014;2(6):e323 − 33. https://doi.org/10.1016/s2214-109x(14)70227-x.
[3] Lawn JE, Bianchi-Jassir F, Russell NJ, Kohli-Lynch M, Tann CJ, Hall J, et al. Group B streptococcal disease worldwide for pregnant women, stillbirths, and children: why, what, and how to undertake estimates? Clin Infect Dis 2017;65(suppl_2):S89-99. http://dx.doi.org/10.1093/cid/cix653.
[4] Russell NJ, Seale AC, O’Driscoll M, O’Sullivan C, Bianchi-Jassir F, Gonzalez-Guarin J, et al. Maternal colonization with group b Streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin Infect Dis 2017;65(suppl_2):S100 − 11. https://doi.org/10.1093/cid/cix658.
[5] Madrid L, Seale AC, Kohli-Lynch M, Edmond KM, Lawn JE, Heath PT, et al. Infant group b streptococcal disease incidence and serotypes worldwide: systematic review and meta-analyses. Clin Infect Dis 2017;65(suppl_2):S160 − 172. https://doi.org/10.1093/cid/cix656.
[6] Wang J, Zhang Y, Lin M, Bao JF, Wang GY, Dong RR, et al. Maternal colonization with group B Streptococcus and antibiotic resistance in China: systematic review and meta-analyses. Ann Clin Microbiol Antimicrob 2023;22(1):5. https://doi.org/10.1186/s12941-023-00553-7.
[7] Francois Watkins LK, McGee L, Schrag SJ, Beall B, Jain JH, Pondo T, et al. Epidemiology of invasive group b streptococcal infections among nonpregnant adults in the united states, 2008-2016. JAMA Intern Med 2019;179(4):479 − 88. https://doi.org/10.1001/jamainternmed.2018.7269.
[8] Lopes E, Fernandes T, Machado MP, Carriço JA, Melo-Cristino J, Ramirez M, et al. Increasing macrolide resistance among Streptococcus agalactiae causing invasive disease in non-pregnant adults was driven by a single capsular-transformed lineage, Portugal, 2009 to 2015. Euro Surveill 2018;23(21):1700473. https://doi.org/10.2807/1560-7917.Es.2018.23.21.1700473.
[9] Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014;158(4):705 − 21. https://doi.org/10.1016/j.cell.2014.05.052.
[10] Slotved HC, Kong FR, Lambertsen L, Sauer S, Gilbert GL. Serotype IX, a proposed new Streptococcus agalactiae serotype. J Clin Microbiol 2007;45(9):2929 − 36. https://doi.org/10.1128/jcm.00117-07.
[11] Li XO, Gao W, Jia ZL, Yao KH, Yang JY, Tong JJ, et al. Characterization of group b streptococcus recovered from pregnant women and newborns attending in a hospital in Beijing, China. Infect Drug Resist 2023;16:2549 − 59. https://doi.org/10.2147/idr.S395942.
[12] Lee CC, Hsu JF, Prasad Janapatla R, Chen CL, Zhou YL, Lien R, et al. Clinical and microbiological characteristics of group b Streptococcus from pregnant women and diseased infants in intrapartum antibiotic prophylaxis era in Taiwan. Sci Rep 2019;9(1):13525. https://doi.org/10.1038/s41598-019-49977-2.
[13] Sheppard AE, Vaughan A, Jones N, Turner P, Turner C, Efstratiou A, et al. Capsular typing method for Streptococcus agalactiae using whole-genome sequence data. J Clin Microbiol 2016;54(5):1388 − 90. https://doi.org/10.1128/jcm.03142-15.
[14] Kapatai G, Patel D, Efstratiou A, Chalker VJ. Comparison of molecular serotyping approaches of Streptococcus agalactiae from genomic sequences. BMC Genomics 2017;18(1):429. https://doi.org/10.1186/s12864-017-3820-5.
[15] Schubert A, Zakikhany K, Schreiner M, Frank R, Spellerberg B, Eikmanns BJ, et al. A fibrinogen receptor from group B Streptococcus interacts with fibrinogen by repetitive units with novel ligand binding sites. Mol Microbiol 2002;46(2):557 − 69. https://doi.org/10.1046/j.1365-2958.2002.03177.x.
[16] Gutekunst H, Eikmanns BJ, Reinscheid DJ. The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells. Infect Immun 2004;72(6):3495 − 504. https://doi.org/10.1128/iai.72.6.3495-3504.2004.
[17] Morello E, Mallet A, Konto-Ghiorghi Y, Chaze T, Mistou MY, Oliva G, et al. Evidence for the sialylation of PilA, the PI-2a pilus-associated adhesin of Streptococcus agalactiae strain NEM316. PLoS One 2015;10(9):e0138103. https://doi.org/10.1371/journal.pone.0138103.
[18] Papasergi S, Brega S, Mistou MY, Firon A, Oxaran V, Dover R, et al. The GBS PI-2a pilus is required for virulence in mice neonates. PLoS One 2011;6(4):e18747. https://doi.org/10.1371/journal.pone.0018747.
[19] Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, Maione D, et al. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol 2006;61(1):126 − 41. https://doi.org/10.1111/j.1365-2958.2006.05225.x.
[20] Mudzana R, Mavenyengwa RT, Gudza-Mugabe M. Analysis of virulence factors and antibiotic resistance genes in group B streptococcus from clinical samples. BMC Infect Dis 2021;21(1):125. https://doi.org/10.1186/s12879-021-05820-6.
[21] Liu YX, Liu JH. Group B streptococcus: virulence factors and pathogenic mechanism. Microorganisms 2022;10(12):2483. https://doi.org/10.3390/microorganisms10122483.
[22] Vornhagen J, Quach P, Boldenow E, Merillat S, Whidbey C, Ngo LY, et al. Bacterial hyaluronidase promotes ascending GBS infection and preterm birth. mBio 2016;7(3):e00781 − 16. https://doi.org/10.1128/mBio.00781-16.
[23] Vornhagen J, Adams Waldorf KM, Rajagopal L. Perinatal Group B streptococcal infections: virulence factors, immunity, and prevention strategies. Trends Microbiol 2017;25(11):919 − 31. https://doi.org/10.1016/j.tim.2017.05.013.
[24] Wu BQ, Su JZ, Li L, Wu WY, Wu JS, Lu YM, et al. Phenotypic and genetic differences among group B Streptococcus recovered from neonates and pregnant women in Shenzhen, China: 8-year study. BMC Microbiol 2019;19(1):185. https://doi.org/10.1186/s12866-019-1551-2.
[25] Jerlström PG, Talay SR, Valentin-Weigand P, Timmis KN, Chhatwal GS. Identification of an immunoglobulin A binding motif located in the beta-antigen of the c protein complex of group B streptococci. Infect Immun 1996;64(7):2787 − 93. https://doi.org/10.1128/iai.64.7.2787-2793.1996.
[26] Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 2009;5(11):e1000660. https://doi.org/10.1371/journal.ppat.1000660.
[27] Caliot E, Firon A, Solgadi A, Trieu-Cuot P, Dramsi S. Lipid lysination by MprF contributes to hemolytic pigment retention in group B Streptococcus. Res Microbiol 2024;175(8):104231. https://doi.org/10.1016/j.resmic.2024.104231.
[28] Sharkey LKR, Edwards TA, O’Neill AJ. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 2016;7(2):e01975. https://doi.org/10.1128/mBio.01975-15.
[29] Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol 2017;174(18):2967 − 83. https://doi.org/10.1111/bph.13936.
[30] Li PY, Wei Y, Li GQ, Cheng H, Xu ZC, Yu ZJ, et al. Comparison of antimicrobial efficacy of eravacycline and tigecycline against clinical isolates of Streptococcus agalactiae in China: in vitro activity, heteroresistance, and cross-resistance. Microb Pathog 2020;149:104502. https://doi.org/10.1016/j.micpath.2020.104502.
[31] Hayes K, O’Halloran F, Cotter L. A review of antibiotic resistance in Group B Streptococcus: the story so far. Crit Rev Microbiol 2020;46(3):253 − 69. https://doi.org/10.1080/1040841x.2020.1758626.