[1] Chen ZY, Deng XW, Fang LQ, Sun KY, Wu YP, Che TL, et al. Epidemiological characteristics and transmission dynamics of the outbreak caused by the SARS-CoV-2 Omicron variant in Shanghai, China: a descriptive study. Lancet Reg Health West Pac 2022;29:100592. http://dx.doi.org/10.1016/j.lanwpc.2022.100592CrossRef
[2] Brockmann D, Helbing D. The hidden geometry of complex, network-driven contagion phenomena. Science 2013;342(6164):1337-42. http://dx.doi.org/10.1126/science.1245200CrossRef
[3] Hay JA, Kissler SM, Fauver JR, Mack C, Tai CG, Samant RM, et al. Quantifying the impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a retrospective cohort study. Elife 2022;11:e81849. http://dx.doi.org/10.7554/eLife.81849CrossRef
[4] Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Soldan VP, Kochel TJ, Kitron U, et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis 2009;3(7):e481. http://dx.doi.org/10.1371/journal.pntd.0000481CrossRef
[5] Doorley R, Berke A, Noyman A, Alonso L, Ribó J, Arroyo V, et al. Mobility and COVID-19 in andorra: country-scale analysis of high-resolution mobility patterns and infection spread. IEEE J Biomed Health Inform 2022;26(1):183-93. http://dx.doi.org/10.1109/JBHI.2021.3121165CrossRef
[6] Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020;368(6490):493-7. http://dx.doi.org/10.1126/science.abb4218CrossRef
[7] Liu SR, Qin YC, Xie ZX, Zhang JF. The spatio-temporal characteristics and influencing factors of covid-19 spread in Shenzhen, China-an analysis based on 417 cases. Int J Environ Res Public Health 2020;17(20):7450. http://dx.doi.org/10.3390/ijerph17207450CrossRef
[8] Susswein Z, Valdano E, Brett T, Rohani P, Colizza V, Bansal S. Ignoring spatial heterogeneity in drivers of SARS-CoV-2 transmission in the US will impede sustained elimination. medRxiv 2021. http://dx.doi.org/10.1101/2021.08.09.21261807.http://dx.doi.org/10.1101/2021.08.09.21261807
[9] Souch JM, Cossman JS, Hayward MD. Interstates of infection: preliminary investigations of human mobility patterns in the COVID-19 pandemic. J Rural Health 2021;37(2):266-71. http://dx.doi.org/10.1111/jrh.12558CrossRef
[10] Tan ST, Park HJ, Rodríguez-Barraquer I, Rutherford GW, Bibbins-Domingo K, Schechter R, et al. COVID-19 vaccination and estimated public health impact in california. JAMA Netw Open 2022;5(4):e228526. http://dx.doi.org/10.1001/jamanetworkopen.2022.8526CrossRef
[11] Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis 2022;22(9):1293-302. http://dx.doi.org/10.1016/S1473-3099(22)00320-6CrossRef
[12] Suthar AB, Wang J, Seffren V, Wiegand RE, Griffing S, Zell E. Public health impact of covid-19 vaccines in the US: observational study. BMJ 2022;377:e069317. http://dx.doi.org/10.1136/bmj-2021-069317CrossRef
[13] Bubar KM, Middleton CE, Bjorkman KK, Parker R, Larremore DB. SARS-CoV-2 transmission and impacts of unvaccinated-only screening in populations of mixed vaccination status. Nat Commun 2022;13(1):2777. http://dx.doi.org/10.1038/s41467-022-30144-7CrossRef