[1]
|
Tan WJ, Zhao X, Ma XJ, Wang WL, Niu PH, Xu WB, et al. A novel coronavirus genome identified in a cluster of pneumonia cases — Wuhan, China 2019−2020. China CDC Wkly 2020;2(4):61 − 2. http://dx.doi.org/10.46234/ccdcw2020.017CrossRef
|
[2]
|
World Health Organization. Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update. 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. [2021-08-05].https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports |
[3]
|
Li ZJ, Chen QL, Feng LZ, Rodewald L, Xia YY, Yu HL, et al. Active case finding with case management: the key to tackling the COVID-19 pandemic. Lancet 2020;396(10243):63 − 70. http://dx.doi.org/10.1016/S0140-6736(20)31278-2CrossRef
|
[4]
|
Dai LP, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021;21(2):73 − 82. http://dx.doi.org/10.1038/s41577-020-00480-0CrossRef
|
[5]
|
Liu KF, Pan XQ, Li LJ, Yu F, Zheng AQ, Du P, et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 2021;184(13):3438 − 51.e10. http://dx.doi.org/10.1016/j.cell.2021.05.031CrossRef
|
[6]
|
Murakami S, Kitamura T, Suzuki J, Sato R, Aoi T, Fujii M, et al. Detection and characterization of bat Sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg Infect Dis 2020;26(12):3025 − 9. http://dx.doi.org/10.3201/eid2612.203386CrossRef
|
[7]
|
Hul V, Delaune D, Karlsson EA, Hassanin A, Tey PO, Baidaliuk A, et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. bioRxiv, 2021. http://dx.doi.org/10.1101/2021.01.26.428212. http://dx.doi.org/10.1101/2021.01.26.428212 |
[8]
|
Zhou H, Ji JK, Chen X, Bi YH, Li J, Wang QH, et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 2021;184(17):4380 − 91.e14. http://dx.doi.org/10.1016/J.CELL.2021.06.008CrossRef
|
[9]
|
Liu KF, Tan SG, Niu S, Wang J, Wu LL, Sun H, et al. Cross-species recognition of SARS-CoV-2 to bat ACE2. Proc Natl Acad Sci USA 2021;118(1):e2020216118. http://dx.doi.org/10.1073/PNAS.2020216118CrossRef
|
[10]
|
World Organization for Animal Health. Infection with SARS-CoV-2 in animals. 2021. https://www.oie.int/app/uploads/2021/05/en-factsheet-sars-cov-2.pdf.[2021-08-05].https://www.oie.int/app/uploads/2021/05/en-factsheet-sars-cov-2.pdf |
[11]
|
Munnink BBO, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021;371(6525):172 − 7. http://dx.doi.org/10.1126/science.abe5901CrossRef
|
[12]
|
Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM, Jenkins-Moore M, et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). bioRxiv, 2021. http://dx.doi.org/10.1101/2021.07.29.454326. http://dx.doi.org/10.1101/2021.07.29.454326 |
[13]
|
Delahay RJ, de la Fuente J, Smith GC, Sharun K, Snary EL, Girón LF, et al. Assessing the risks of SARS-CoV-2 in wildlife. One Health Outlook 2021;3:7. http://dx.doi.org/10.1186/s42522-021-00039-6CrossRef
|
[14]
|
Huang K, Zhang YF, Hui XF, Zhao Y, Gong WX, Wang T, et al. Q493K and Q498H substitutions in spike promote adaptation of SARS-CoV-2 in mice. EBioMedicine 2021;67:103381. http://dx.doi.org/10.1016/j.ebiom.2021.103381CrossRef
|
[15]
|
Wang L, Su S, Bi YH, Wong G, Gao GF. Bat-origin coronaviruses expand their host range to pigs. Trends Microbiol 2018;26(6):466 − 70. http://dx.doi.org/10.1016/j.tim.2018.03.001CrossRef
|
[16]
|
Bayarri-Olmos R, Rosbjerg A, Johnsen LB, Helgstrand C, Bak-Thomsen T, Garred P, et al. The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization. J Biol Chem 2021;296:100536. http://dx.doi.org/10.1016/j.jbc.2021.100536CrossRef
|