[1]
|
WHO. Tracking SARS-CoV-2 variants. 2021. https://www.who.int/activities/tracking-SARS-CoV-2-variants/. [2022-9-15]. |
[2]
|
Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. medRxiv 2022. http://dx.doi.org/10.1101/2022.01.27.22269965. |
[3]
|
Xin QQ, Wu QH, Chen XH, Han BH, Chu K, Song Y, et al. Six-month follow-up of a booster dose of CoronaVac in two single-centre phase 2 clinical trials. Nat Commun 2022;13(1):3100. http://dx.doi.org/10.1038/s41467-022-30864-w. |
[4]
|
Cheng SSM, Mok CKP, Li JKC, Ng SS, Lam BHS, Jeevan T, et al. Plaque-neutralizing antibody to BA.2.12.1, BA.4 and BA.5 in individuals with three doses of BioNTech or CoronaVac vaccines, natural infection and breakthrough infection. J Clin Virol 2022;156:105273. http://dx.doi.org/10.1016/j.jcv.2022.105273. |
[5]
|
Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 2021;27(7):1205-11. http://dx.doi.org/10.1038/S41591-021-01377-8. |
[6]
|
Han PC, Li LJ, Liu S, Wang QS, Zhang D, Xu ZP, et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 2022;185(4):630-40.e10. http://dx.doi.org/10.1016/j.cell.2022.01.001. |
[7]
|
Cao YL, Wang J, Jian FC, Xiao TH, Song WL, Yisimayi A, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022;602(7898):657-63. http://dx.doi.org/10.1038/s41586-021-04385-3. |
[8]
|
Cao YL, Yisimayi A, Jian FC, Song WL, Xiao TH, Wang L, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022;608(7923):593-602. http://dx.doi.org/10.1038/s41586-022-04980-y. |
[9]
|
Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, Zhou DM, Ginn HM, Selvaraj M, et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell 2022;185(14):2422-33.e13. http://dx.doi.org/10.1016/j.cell.2022.06.005. |
[10]
|
Huang ZY, Xu SF, Liu JC, Wu LL, Qiu J, Wang N, et al. Effectiveness of inactivated and Ad5-nCoV COVID-19 vaccines against SARS-CoV-2 Omicron BA. 2 variant infection, severe illness, and death. BMC Med 2022;20(1):400. http://dx.doi.org/10.1186/s12916-022-02606-8. |
[11]
|
McMenamin ME, Nealon J, Lin Y, Wong JY, Cheung JK, Lau EHY, et al. Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: a population-based observational study. Lancet Infect Dis 2022;22(10):1435-43. http://dx.doi.org/10.1016/S1473-3099(22)00345-0. |
[12]
|
Cheng FWT, Fan M, Wong CKH, Chui CSL, Lai FTT, Li X, et al. The effectiveness and safety of mRNA (BNT162b2) and inactivated (CoronaVac) COVID-19 vaccines among individuals with chronic kidney diseases. Kidney Int 2022;102(4):922-5. http://dx.doi.org/10.1016/j.kint.2022.07.018. |
[13]
|
Wan EYF, Mok AHY, Yan VKC, Wang BY, Zhang R, Hong SN, et al. Vaccine effectiveness of BNT162b2 and CoronaVac against SARS-CoV-2 Omicron BA.2 infection, hospitalisation, severe complications, cardiovascular disease and mortality in patients with diabetes mellitus: a case control study. J Infect 2022;85(5):e140-4. http://dx.doi.org/10.1016/j.jinf.2022.08.008. |
[14]
|
HKU MED. HKUMed-CU Medicine joint study finds that third dose of Comirnaty has better protection from COVID-19 variant Omicron. 2021. https://www.med.hku.hk/en/news/press/20211223-hku-cuhk-third-dose-vaccine-omicron. [2022-9-15]. |
[15]
|
Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. COVID-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N Engl J Med 2022; 386:1532-1546. http://dx.doi.org/10.1056/NEJMoa2119451. |
[16]
|
U.S. Food & Drug Adminstration. Moderna COVID-19 vaccines spikevax, moderna COVID-19 vaccine and moderna COVID-19 vaccine, bivalent. 2022. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/moderna-covid-19-vaccines. [2022-9-15]. |
[17]
|
Surie D, DeCuir J, Zhu YW, Gaglani M, Ginde AA, Douin DJ, et al. Early estimates of bivalent mRNA vaccine effectiveness in preventing COVID-19-associated hospitalization among immunocompetent adults aged ≥65 Years - IVY network, 18 States, September 8-November 30, 2022. MMWR Morb Mortal Wkly Rep 2022;71(5152):1625-30. http://dx.doi.org/10.15585/mmwr.mm715152e2. |
[18]
|
Tenforde MW, Weber ZA, Natarajan K, Klein NP, Kharbanda AB, Stenehjem E, et al. Early estimates of bivalent mRNA vaccine effectiveness in preventing COVID-19-associated emergency department or urgent care encounters and hospitalizations among immunocompetent adults - VISION network, Nine States, September-November 2022. MMWR Morb Mortal Wkly Rep 2022;71(5152):1616-24. http://dx.doi.org/10.15585/mmwr.mm715152e1. |
[19]
|
Link-Gelles R, Ciesla AA, Fleming-Dutra KE, Smith ZR, Britton A, Wiegand RE, et al. Effectiveness of bivalent mRNA vaccines in preventing symptomatic SARS-CoV-2 infection - increasing community access to testing program, United States, September-November 2022. MMWR Morb Mortal Wkly Rep 2022;71(48):1526-30. http://dx.doi.org/10.15585/mmwr.mm7148e1. |