[1] Brolan CE, Gouda HN, Abouzahr C, Lopez AD. Beyond health: five global policy metaphors for civil registration and vital statistics. Lancet 2017;389(10074):1084 − 5. https://doi.org/10.1016/S0140-6736(17)30753-5.
[2] Qaddumi JAS, Nazzal Z, Yacoup ARS, Mansour M. Quality of death notification forms in North West Bank/Palestine: a descriptive study. BMC Res Notes 2017;10(1):154. https://doi.org/10.1186/s13104-017-2469-0.
[3] He Q, Liu ZR, Chen YJ, Xing XY, Li R. Sampling audit evaluation on quality of the network reporting death data in Anhui national disease surveillance points from 2013 to 2017. Anhui J Prev Med 2019;25(3):165-9. https://d.wanfangdata.com.cn/periodical/ahyfyx201903002. (In Chinese).
[4] Falissard L, Morgand C, Roussel S, Imbaud C, Ghosn W, Bounebache K, et al. A deep artificial neural network-based model for prediction of underlying cause of death from death certificates: algorithm development and validation. JMIR Med Inform 2020;8(4):e17125. https://doi.org/10.2196/17125.
[5] Ma YH, Jiang JT, Dong S, Li CM, Yan XY. Book recommendation model based on wide and deep model. In: Proceedings of the 2021 IEEE international conference on artificial intelligence and industrial design (AIID). Guangzhou, China: IEEE. 2012; p. 247-54. http://dx.doi.org/10.1109/AIID51893.2021.9456524.
[6] Xuan SL, Di XJ, Li SF, Yang WJ, Kang K, Ma SW. Evaluation on the reliability of mortality surveillance system in Henan from 2015 to 2017. Henan J Prev Med 2021;32(10):781 − 4. https://doi.org/10.13515/j.cnki.hnjpm.1006-8414.2021.10.013.
[7] Lu TH. Using ACME (Automatic Classification of Medical Entry) software to monitor and improve the quality of cause of death statistics. J Epidemiol Community Health 2003;57(6):470-1. https://jech.bmj.com/content/57/6/470.info.
[8] Ji YB, Wang LJ, Zhou MG. Analysis on coding examples of automated coding software on underlying death cause in death surveillance. Chin J Dis Control Prev 2013;17(9):813-7. http://qikan.cqvip.com/Qikan/Article/Detail?id=47346254. (In Chinese).
[9] Hoffman RA, Venugopalan J, Qu L, Wu H, Wang MD. Improving validity of cause of death on death certificates. ACM BCB 2018;2018:178-83. https://pubmed.ncbi.nlm.nih.gov/32558825/.
[10] Mea VD, Popescu MH, Roitero K. Underlying cause of death identification from death certificates via categorical embeddings and convolutional neural networks. In: Proceedings of the 2020 IEEE international conference on healthcare informatics (ICHI). Oldenburg, Germany: IEEE. 2020; p. 1-6. http://dx.doi.org/10.1109/ICHI48887.2020.9374316.
[11] Zhu YD, Sha Y, Wu H, Li M, Hoffman RA, Wang MD. Proposing causal sequence of death by neural machine translation in public health informatics. IEEE J Biomed Health Inform 2022;26(4):1422 − 31. https://doi.org/10.1109/JBHI.2022.3163013.
[12] Yang X, Ma HS, Gao KY, Ge H. An automated method of causal inference of the underlying cause of death of citizens. Life 2022;12(8):1134. https://doi.org/10.3390/LIFE12081134.
[13] Hart JD, Sorchik R, Bo KS, Chowdhury HR, Gamage S, Joshi R, et al. Improving medical certification of cause of death: effective strategies and approaches based on experiences from the Data for Health Initiative. BMC Med 2020;18(1):74. https://doi.org/10.1186/s12916-020-01519-8.
[14] Lin XQ, Zhong WL, Li WY, Huang SF, Zhu Y, Yin YR. Study on the changes of death cause spectrum and the loss of life expectancy in Fujian province in 2015. Chronic Pathematol J 2019;20(12):1795 − 8. https://doi.org/10.16440/j.cnki.1674-8166.2019.12.011.