[1] Tian C, Liu D, Chen C, Xu Y, Gong HS, Chen C, et al. Global transcriptional profiling of the postmortem brain of a patient with G114V genetic Creutzfeldt-Jakob disease. Int J Mol Med 2013;31(3):676 − 88. http://dx.doi.org/10.3892/ijmm.2013.1239CrossRef
[2] Tian C, Liu D, Sun QL, Chen C, Xu Y, Wang H, et al. Comparative analysis of gene expression profiles between cortex and thalamus in Chinese fatal familial insomnia patients. Mol Neurobiol 2013;48(1):36 − 48. http://dx.doi.org/10.1007/s12035-013-8426-6CrossRef
[3] Tian C, Liu D, Xiang W, Kretzschmar HA, Sun QL, Gao C, et al. Analyses of the similarity and difference of global gene expression profiles in cortex regions of three neurodegenerative diseases: sporadic Creutzfeldt-Jakob disease (sCJD), fatal familial insomnia (FFI), and Alzheimer's disease (AD). Mol Neurobiol 2014;50(2):473 − 81. http://dx.doi.org/10.1007/s12035-014-8758-xCrossRef
[4] Shi Q, Chen LN, Zhang BY, Xiao K, Zhou W, Chen C, et al. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 2015;14(4):854 − 69. http://dx.doi.org/10.1074/mcp.M114.038018CrossRef
[5] Shi Q, Chen LN, Lv Y, Zhang BY, Xiao K, Zhou W, et al. Comparative proteomics analyses for 139A and ME7 scrapie infected mice brains in the middle and terminal stages. Proteomics Clin Appl 2017;11(5 − 6):1600113. http://dx.doi.org/10.1002/prca.201600113CrossRef
[6] Chen LN, Shi Q, Zhang BY, Zhang XM, Wang J, Xiao K, et al. Proteomic analyses for the global S-nitrosylated proteins in the brain tissues of different human prion diseases. Mol Neurobiol 2016;53(8):5079 − 96. http://dx.doi.org/10.1007/s12035-015-9440-7CrossRef
[7] Chen LN, Sun J, Yang XD, Xiao K, Lv Y, Zhang BY, et al. The brain NO levels and NOS activities ascended in the early and middle stages and descended in the terminal stage in scrapie-infected animal models. Mol Neurobiol 2017;54(3):1786 − 96. http://dx.doi.org/10.1007/s12035-016-9755-zCrossRef
[8] Wang J, Zhang J, Shi Q, Zhang BY, Chen C, Chen LN, et al. Scrapie infection in experimental rodents and SMB-S15 cells decreased the brain endogenous levels and activities of Sirt1. J Mol Neurosci 2015;55(4):1022 − 30. http://dx.doi.org/10.1007/s12031-014-0459-4CrossRef
[9] Maimaitiming A, Xiao K, Hu C, Chen J, Yang XH, Zhou DH, et al. Aberrant decrease of the endogenous SIRT3 and increases of acetylated proteins in scrapie-infected cell line SMB-S15 and in the brains of experimental mice. ACS Chem Neurosci 2019;10(10):4293 − 302. http://dx.doi.org/10.1021/acschemneuro.9b00341CrossRef
[10] Li XL, Dong CF, Shi S, Wang GR, Li Y, Wang X, et al. The octarepeat region of hamster PrP (PrP51-91) enhances the formation of microtubule and antagonize Cu2+-induced microtubule-disrupting activity. Acta Biochim Biophys Sin (Shanghai) 2009;41(11):929 − 37. http://dx.doi.org/10.1093/abbs/gmp088CrossRef
[11] Dong CF, Shi S, Wang XF, An R, Li P, Chen JM, et al. The N-terminus of PrP is responsible for interacting with tubulin and fCJD related PrP mutants possess stronger inhibitive effect on microtubule assembly in vitro. Arch Biochem Biophys 2008;470(1):83 − 92. http://dx.doi.org/10.1016/j.abb.2007.11.007CrossRef
[12] Li XL, Wang GR, Jing YY, Pan MM, Dong CF, Zhou RM, et al. Cytosolic PrP induces apoptosis of cell by disrupting microtubule assembly. J Mol Neurosci 2011;43(3):316 − 25. http://dx.doi.org/10.1007/s12031-010-9443-9CrossRef
[13] Wang ZY, Tian C, Jing YY, Gong HS, Guo Y, Shi Q, et al. Knockdown of prion protein (PrP) by RNA interference weakens the protective activity of wild-type PrP against copper ion and antagonizes the cytotoxicity of fCJD-associated PrP mutants in cultured cells. Int J Mol Med 2011;28(3):413 − 21. http://dx.doi.org/10.3892/ijmm.2011.688CrossRef
[14] Zhou RM, Jing YY, Guo Y, Gao C, Zhang BY, Chen C, et al. Molecular interaction of TPPP with PrP antagonized the CytoPrP-induced disruption of microtubule structures and cytotoxicity. PLoS One 2011;6(8):e23079. http://dx.doi.org/10.1371/journal.pone.0023079CrossRef
[15] Han J, Zhang J, Yao HL, Wang XF, Li F, Chen L, et al. Study on interaction between microtubule associated protein tau and prion protein. Sci China C Life Sci 2006;49(5):473 − 9. http://dx.doi.org/10.1007/s11427-006-2019-9CrossRef
[16] Han J, Wang XF, Yao HL, Gao C, Li F, Zhang BY, et al. Prion protein inhibits tau-mediated microtubule formation. Neurosci Bull 2005;21(6):398 − 403.
[17] Wang XF, Dong CF, Zhang J, Wan YZ, Li F, Huang YX, et al. Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro. Mol Cell Biochem 2008;310(1 − 2):49 − 55. http://dx.doi.org/10.1007/s11010-007-9664-6CrossRef
[18] Gong HS, Guo Y, Tian C, Xie WL, Shi Q, Zhang J, et al. Reduction of protein kinase MARK4 in the brains of experimental scrapie rodents and human prion disease correlates with deposits of PrPSc. Int J Mol Med 2012;30(3):569 − 78. http://dx.doi.org/10.3892/ijmm.2012.1025CrossRef
[19] Guo Y, Gong HS, Zhang J, Xie WL, Tian C, Chen C, et al. Remarkable reduction of MAP2 in the brains of scrapie-infected rodents and human prion disease possibly correlated with the increase of calpain. PLoS One 2012;7(1):e30163. http://dx.doi.org/10.1371/journal.pone.0030163CrossRef
[20] Chen JM, Gao C, Shi Q, Shan B, Lei YJ, Dong CF, et al. Different expression patterns of CK2 subunits in the brains of experimental animals and patients with transmissible spongiform encephalopathies. Arch Virol 2008;153(6):1013 − 20. http://dx.doi.org/10.1007/s00705-008-0084-zCrossRef
[21] Chen JM, Gao C, Shi Q, Wang GR, Lei YJ, Shan B, et al. Casein kinase II interacts with prion protein in vitro and forms complex with native prion protein in vivo. Acta Biochim Biophys Sin (Shanghai) 2008;40(12):1039 − 47. http://dx.doi.org/10.1111/j.1745-7270.2008.00486.xCrossRef
[22] Wang ZY, Shi Q, Wang SB, Tian C, Xu Y, Guo Y, et al. Co-expressions of casein kinase 2 (CK2) subunits restore the down-regulation of tubulin levels and disruption of microtubule structures caused by PrP mutants. J Mol Neurosci 2013;50(1):14 − 22. http://dx.doi.org/10.1007/s12031-012-9845-yCrossRef
[23] Meng G, Tian C, Wang H, Xu Y, Zhang BY, Shi Q, et al. Remarkable reductions of PAKs in the brain tissues of scrapie-infected rodent possibly linked closely with neuron loss. Med Microbiol Immunol 2014;203(5):291 − 302. http://dx.doi.org/10.1007/s00430-014-0342-5CrossRef
[24] Sun J, Wang H, Chen LN, Wang J, Lv Y, Yang XD, et al. Remarkable impairment of Wnt/β-catenin signaling in the brains of the mice infected with scrapie agents. J Neurochem 2016;136(4):731 − 40. http://dx.doi.org/10.1111/jnc.13416CrossRef
[25] Wang H, Tian C, Xu Y, Xie WL, Zhang J, Zhang BY, et al. Abortive cell cycle events in the brains of scrapie-infected hamsters with remarkable decreases of PLK3/Cdc25C and increases of PLK1/cyclin B1. Mol Neurobiol 2013;48(3):655 − 68. http://dx.doi.org/10.1007/s12035-013-8455-1CrossRef
[26] Wang TT, Tian C, Sun J, Wang H, Zhang BY, Chen C, et al. Down-regulation of brain-derived neurotrophic factor and its signaling components in the brain tissues of scrapie experimental animals. Int J Biochem Cell Biol 2016;79:318 − 26. http://dx.doi.org/10.1016/j.biocel.2016.08.033CrossRef
[27] Zhang RQ, Chen C, Xiao LJ, Sun J, Ma Y, Yang XD, et al. Aberrant alterations of the expressions and S-nitrosylation of calmodulin and the downstream factors in the brains of the rodents during scrapie infection. Prion 2017;11(5):352 − 67. http://dx.doi.org/10.1080/19336896.2017.1367082CrossRef
[28] Hu C, Chen C, Chen J, Xiao K, Wang J, Shi Q, et al. The low levels of nerve growth factor and its upstream regulatory kinases in prion infection is reversed by resveratrol. Neurosci Res 2021;162:52 − 62. http://dx.doi.org/10.1016/j.neures.2019.12.019CrossRef
[29] Yan YE, Zhang J, Wang K, Xu Y, Ren K, Zhang BY, et al. Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines. Mol Neurobiol 2014;49(2):991 − 1004. http://dx.doi.org/10.1007/s12035-013-8574-8CrossRef
[30] Han J, Song QQ, Sun P, Zhang J, Wang X, Song J, et al. Interaction between 14-3-3β and PrP influences the dimerization of 14-3-3 and fibrillization of PrP106-126. Int J Biochem Cell Biol 2014;47:20 − 8. http://dx.doi.org/10.1016/j.biocel.2013.10.013CrossRef
[31] Shi Q, Song QQ, Sun P, Zhang J, Song J, Chen LN, et al. Infection of prions and treatment of PrP106-126 alter the endogenous status of protein 14-3-3 and trigger the mitochondrial apoptosis possibly via activating Bax pathway. Mol Neurobiol 2014;49(2):840 − 51. http://dx.doi.org/10.1007/s12035-013-8560-1CrossRef
[32] Xu K, Wang X, Shi Q, Chen C, Tian C, Li XL, et al. Human prion protein mutants with deleted and inserted octarepeats undergo different pathways to trigger cell apoptosis. J Mol Neurosci 2011;43(3):225 − 34. http://dx.doi.org/10.1007/s12031-010-9387-0CrossRef
[33] Wang X, Dong CF, Shi Q, Shi S, Wang GR, Lei YJ, et al. Cytosolic prion protein induces apoptosis in human neuronal cell SH-SY5Y via mitochondrial disruption pathway. BMB Rep 2009;42(7):444 − 9. http://dx.doi.org/10.5483/BMBRep.2009.42.7.444CrossRef
[34] Yang XD, Shi Q, Sun J, Lv Y, Ma Y, Chen C, et al. Aberrant alterations of mitochondrial factors drp1 and opa1 in the brains of scrapie experiment rodents. J Mol Neurosci 2017;61(3):368 − 78. http://dx.doi.org/10.1007/s12031-016-0866-9CrossRef
[35] Gao LP, Xiao K, Wu YZ, Chen DD, Yang XH, Shi Q, et al. Enhanced mitophagy activity in prion-infected cultured cells and prion-infected experimental mice via a pink1/parkin-dependent mitophagy pathway. ACS Chem Neurosci 2020;11(5):814 − 29. http://dx.doi.org/10.1021/acschemneuro.0c00039CrossRef
[36] Wang X, Shi Q, Xu K, Gao C, Chen C, Li XL, et al. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One 2011;6(1):e14602. http://dx.doi.org/10.1371/journal.pone.0014602CrossRef
[37] Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, et al. Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 2012;7(6):e38221. http://dx.doi.org/10.1371/journal.pone.0038221CrossRef
[38] An R, Dong CF, Lei YJ, Han L, Li P, Chen JM, et al. PrP mutants with different numbers of octarepeat sequences are more susceptible to the oxidative stress. Sci China C Life Sci 2008;51(7):630 − 9. http://dx.doi.org/10.1007/s11427-008-0062-4CrossRef
[39] Jing YY, Li XL, Shi Q, Wang ZY, Guo Y, Pan MM, et al. A novel PrP partner HS-1 associated protein X-1 (HAX-1) protected the cultured cells against the challenge of H2O2. J Mol Neurosci 2011;45(2):216 − 28. http://dx.doi.org/10.1007/s12031-011-9498-2CrossRef