[1]
|
Petrova VN, Russell CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol 2018;16(1):47 − 60. |
[2]
|
Chen YQ, Wohlbold TJ, Zheng NY, Huang M, Huang YP, Neu KE, et al. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 2018;173(2):417 − 29.e10. |
[3]
|
Weiss CD, Wang W, Lu Y, Billings M, Eick-Cost A, Couzens L, et al. Neutralizing and neuraminidase antibodies correlate with protection against influenza during a late season A/H3N2 outbreak among unvaccinated military recruits. Clin Infect Dis 2020;71(12):3096 − 102. |
[4]
|
Sandbulte MR, Westgeest KB, Gao J, Xu XY, Klimov AI, Russell CA, et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc Natl Acad Sci USA 2011;108(51):20748 − 53. |
[5]
|
Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, et al. GISAID's role in pandemic response. China CDC Wkly 2021;3(49):1049 − 51. |
[6]
|
Zhai K, Dong JZ, Zeng JF, Cheng PW, Wu XS, Han WJ, et al. Global antigenic landscape and vaccine recommendation strategy for low pathogenic avian influenza A (H9N2) viruses. J Infect 2024;89(2):106199. |
[7]
|
Catani JPP, Smet A, Ysenbaert T, Vuylsteke M, Bottu G, Mathys J, et al. The antigenic landscape of human influenza N2 neuraminidases from 2009 until 2017. eLife 2024;12:RP90782 |
[8]
|
Gao J, Li X, Klenow L, Malik T, Wan HQ, Ye ZP, et al. Antigenic comparison of the neuraminidases from recent influenza A vaccine viruses and 2019–2020 circulating strains. npj Vaccines 2022;7(1):79 |
[9]
|
Schild GC, Oxford JS, Dowdle WR, Coleman M, Pereira MS, Chakraverty P. Antigenic variation in current influenza A viruses: evidence for a high frequency of antigenic ‘drift’ for the Hong Kong virus. Bull World Health Organ 1974;51(1):1-11. https://pubmed.ncbi.nlm.nih.gov/4218138/. |
[10]
|
Kilbourne ED, Johansson BE, Grajower B. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc Natl Acad Sci USA 1990;87(2):786 − 90 |
[11]
|
Meng J, Liu JZ, Song WK, Li HL, Wang JY, Zhang L, et al. PREDAC-CNN: predicting antigenic clusters of seasonal influenza A viruses with convolutional neural network. Brief Bioinform 2024;25(2):bbae033. |
[12]
|
Tubiana J, Schneidman-Duhovny D, Wolfson HJ. ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction. Nat Methods 2022;19(6):730 − 9. |
[13]
|
Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004;4(6):1633 − 49. |
[14]
|
Jagadesh A, Salam AAA, Mudgal PP, Arunkumar G. Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Arch Virol 2016;161(8):2087 − 94. |
[15]
|
Du XJ, Dong LB, Lan Y, Peng YS, Wu AP, Zhang Y, et al. Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation. Nat Commun 2012;3(1):709. |
[16]
|
Qiu JX, Qiu TY, Dong QL, Xu DP, Wang X, Zhang Q, et al. Predicting the antigenic relationship of foot-and-mouth disease virus for vaccine selection through a computational model. IEEE/ACM Trans Comput Biol Bioinf 2021;18(2):677 − 85. |
[17]
|
Westgeest KB, de Graaf M, Fourment M, Bestebroer TM, van Beek R, Spronken MIJ, et al. Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. J Gen Virol 2012;93(9):1996 − 2007. |
[18]
|
Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, et al. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci USA 2006;103(50):19123 − 7. |