[1]
|
Zhou HL, Zhen SS, Wang JX, Zhang CJ, Qiu C, Wang SM, et al. Burden of acute gastroenteritis caused by norovirus in China: a systematic review. J Infect 2017;75(3):216 − 24. http://dx.doi.org/10.1016/j.jinf.2017.06.004CrossRef
|
[2]
|
Chhabra P, de Graaf M, Parra GI, Chan MCW, Green K, Martella V, et al. Updated classification of norovirus genogroups and genotypes. J Gen Virol 2019;100(10):1393 − 406. http://dx.doi.org/10.1099/jgv.0.001318CrossRef
|
[3]
|
van Beek J, de Graaf M, Al-Hello H, Allen DJ, Ambert-Balay K, Botteldoorn N, et al. Molecular surveillance of norovirus, 2005-16: an epidemiological analysis of data collected from the NoroNet network. Lancet Infect Dis 2018;18(5):545 − 53. http://dx.doi.org/10.1016/S1473-3099(18)30059-8CrossRef
|
[4]
|
Ahmed K, Dony JJF, Mori D, Haw LY, Giloi N, Jeffree MS, et al. An outbreak of gastroenteritis by emerging norovirus GII.2[P16] in a kindergarten in Kota Kinabalu, Malaysian Borneo. Sci Rep 2020;10(1):7137. http://dx.doi.org/10.1038/s41598-020-64148-4CrossRef
|
[5]
|
Ao YY, Wang JJ, Ling H, He YQ, Dong XG, Wang X, et al. Norovirus GII.P16/GII.2-associated gastroenteritis, China, 2016. Emerg Infect Dis 2017;23(7):1172 − 5. http://dx.doi.org/10.3201/eid2307.170034CrossRef
|
[6]
|
Nagasawa K, Matsushima Y, Motoya T, Mizukoshi F, Ueki Y, Sakon N, et al. Phylogeny and immunoreactivity of norovirus GII.P16-GII.2, Japan, Winter 2016−17. Emerg Infect Dis 2018;24(1):144 − 8. http://dx.doi.org/10.3201/eid2401.170284CrossRef
|
[7]
|
Kendra JA, Tohma K, Ford-Siltz LA, Lepore CJ, Parra GI. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc Natl Acad Sci USA 2021;118(11):e2015874118. http://dx.doi.org/10.1073/pnas.2015874118CrossRef
|
[8]
|
Tohma K, Lepore CJ, Ford-Siltz LA, Parra GI. Phylogenetic analyses suggest that factors other than the capsid protein play a role in the epidemic potential of GII.2 norovirus. mSphere 2017;2(3):e00187 − 17. http://dx.doi.org/10.1128/mSphereDirect.00187-17CrossRef
|
[9]
|
Swanstrom J, Lindesmith LC, Donaldson EF, Yount B, Baric RS. Characterization of blockade antibody responses in GII.2.1976 snow mountain virus-infected subjects. J Virol 2014;88(2):829 − 37. http://dx.doi.org/10.1128/JVI.02793-13CrossRef
|
[10]
|
Bull RA, Hyde J, Mackenzie JM, Hansman GS, Oka T, Takeda N, et al. Comparison of the replication properties of murine and human calicivirus RNA-dependent RNA polymerases. Virus Genes 2011;42(1):16 − 27. http://dx.doi.org/10.1007/s11262-010-0535-yCrossRef
|
[11]
|
Cheung SKC, Kwok K, Zhang LY, Mohammad KN, Lui GCY, Lee N, et al. Higher viral load of emerging norovirus GII.P16-GII.2 than pandemic GII.4 and epidemic GII.17, Hong Kong, China. Emerg Infect Dis 2019;25(1):119 − 22. http://dx.doi.org/10.3201/eid2501.180395CrossRef
|
[12]
|
Jin M, Wu SY, Kong XY, Xie HP, Fu JG, He YQ, et al. Norovirus outbreak surveillance, China, 2016-2018. Emerg Infect Dis 2020;26(3):437 − 45. http://dx.doi.org/10.3201/EID2603.191183CrossRef
|
[13]
|
Qian Y, Song MH, Jiang X, Xia M, Meller J, Tan M, et al. Structural adaptations of norovirus GII.17/13/21 lineage through two distinct evolutionary paths. J Virol 2019;93(1):e01655 − 18. http://dx.doi.org/10.1128/JVI.01655-18CrossRef
|
[14]
|
Cannon JL, Barclay L, Collins NR, Wikswo ME, Castro CJ, Magana LC, et al. Genetic and epidemiologic trends of norovirus outbreaks in the united states from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses. J Clin Microbiol 2017;55(7):2208 − 21. http://dx.doi.org/10.1128/JCM.00455-17CrossRef
|
[15]
|
Hasing ME, Lee BE, Qiu YY, Xia M, Pabbaraju K, Wong A, et al. Changes in norovirus genotype diversity in gastroenteritis outbreaks in Alberta, Canada: 2012-2018. BMC Infect Dis 2019;19(1):177. http://dx.doi.org/10.1186/s12879-019-3792-yCrossRef
|