[1] Chen ZJ, Shi JQ, Zhang Y, Zhang JH, Li SQ, Guan L, et al. Lipidomics profiles and lipid metabolite biomarkers in serum of coal workers' pneumoconiosis. Toxics 2022;10(9):496. http://dx.doi.org/10.3390/toxics10090496CrossRef
[2] González-Domínguez R. Metabolomic approaches for phospholipid analysis: advances and challenges. Bioanalysis 2018;10(14):1069 − 71. http://dx.doi.org/10.4155/bio-2018-0098CrossRef
[3] Rindlisbacher B, Schmid C, Geiser T, Bovet C, Funke-Chambour M. Serum metabolic profiling identified a distinct metabolic signature in patients with idiopathic pulmonary fibrosis - a potential biomarker role for LysoPC. Respir Res 2018;19(1):7. http://dx.doi.org/10.1186/s12931-018-0714-2CrossRef
[4] Montesi SB, Mathai SK, Brenner LN, Gorshkova IA, Berdyshev EV, Tager AM, et al. Docosatetraenoyl LPA is elevated in exhaled breath condensate in idiopathic pulmonary fibrosis. BMC Pulm Med 2014;14:5. http://dx.doi.org/10.1186/1471-2466-14-5CrossRef
[5] Yan F, Wen ZS, Wang R, Luo WL, Du YF, Wang WJ, et al. Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by lipidomics. BMC Pulm Med 2017;17(1):174. http://dx.doi.org/10.1186/s12890-017-0513-4CrossRef
[6] Peng FD, Dai J, Qian QJ, Cao XF, Wang LF, Zhu M, et al. Serum metabolic profiling of coal worker’s pneumoconiosis using untargeted lipidomics. Environ Sci Pollut Res Int 2022;29(56):85444 − 53. http://dx.doi.org/10.1007/s11356-022-21905-4CrossRef
[7] Ma RM, Fan YL, Huang XX, Wang JW, Li S, Wang YY, et al. Lipid dysregulation associated with progression of silica-induced pulmonary fibrosis. Toxicol Sci 2023;191(2):296 − 307. http://dx.doi.org/10.1093/toxsci/kfac124CrossRef
[8] Wang WR, Peng FD, Li T, Ding CG, Wang HQ. Determination of 22 phospholipids in serum by ultra performance liquid chromatography-tandem mass spectrometry. Chin J Ind Hyg Occup Dis 2023;41(5):366 − 71. http://dx.doi.org/10.3760/cma.j.cn121094-20221021-00508 (In Chinese). CrossRef
[9] Kong YH, Wang HY, Yan MY, Li YL, Xu XY, Yang JP. Research of lipid metabolomics on silica treated rats. Ind Health Occup Dis 2021;47(3):223 − 6. https://d.wanfangdata.com.cn/periodical/gywsyzyb202103013. (In Chinese). https://d.wanfangdata.com.cn/periodical/gywsyzyb202103013
[10] Vazquez-de-Lara LG, Tlatelpa-Romero B, Romero Y, Fernández-Tamayo N, Vazquez-de-Lara F, Justo-Janeiro JM, et al. Phosphatidylethanolamine induces an antifibrotic phenotype in normal human lung fibroblasts and ameliorates bleomycin-induced lung fibrosis in mice. Int J Mol Sci 2018;19(9):2758. http://dx.doi.org/10.3390/ijms19092758CrossRef
[11] Saito K, Tanaka N, Ikari J, Suzuki M, Anazawa R, Abe M, et al. Comprehensive lipid profiling of bleomycin-induced lung injury. J Appl Toxicol 2019;39(4):658 − 71. http://dx.doi.org/10.1002/jat.3758CrossRef
[12] Hung ND, Kim MR, Sok DE. 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. Lipids 2011;46(10):893 − 906. http://dx.doi.org/10.1007/s11745-011-3589-2CrossRef
[13] Han S, Mallampalli RK. The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc 2015;12(5):765 − 74. http://dx.doi.org/10.1513/AnnalsATS.201411-507FRCrossRef
[14] Glasser JR, Mallampalli RK. Surfactant and its role in the pathobiology of pulmonary infection. Microbes Infect 2012;14(1):17 − 25. http://dx.doi.org/10.1016/j.micinf.2011.08.019CrossRef
[15] Preuß S, Scheiermann J, Stadelmann S, Omam FD, Winoto-Morbach S, Lex D, et al. 18:1/18:1-Dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulm Pharmacol Ther 2014;28(1):25 − 34. http://dx.doi.org/10.1016/j.pupt.2013.10.002CrossRef