[1] Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun 2021;12(1):972. http://dx.doi.org/10.1038/s41467-021-21240-1CrossRef
[2] Kreye J, Reincke SM, Kornau HC, Sánchez-Sendin E, Corman VM, Liu HJ, et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell 2020;183(4):1058-69.e19. http://dx.doi.org/10.1016/j.cell.2020.09.049CrossRef
[3] U.S. Food & Drug Administration. Coronavirus (COVID-19) update: FDA authorizes monoclonal antibody for treatment of COVID-19. 2020. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19. [2021-8-22].https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19
[4] Cao LX, Goreshnik I, Coventry B, Case JB, Miller L, Kozodoy L, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 2020;370(6515):426-31. http://dx.doi.org/10.1126/science.abd9909CrossRef
[5] Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci USA 2020;117(36):22311-22. http://dx.doi.org/10.1073/pnas.2010146117CrossRef
[6] Yan H, Jiao HW, Liu QY, Zhang Z, Xiong Q, Wang BJ, et al. ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nat Ecol Evol 2021;5(5):600-8. http://dx.doi.org/10.1038/s41559-021-01407-1CrossRef
[7] Huang SJ, Cai NG, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 2018;15(1):41-51. http://dx.doi.org/10.21873/cgp.20063CrossRef
[8] Liang L, Rasmussen MLH, Piening B, Shen XT, Chen SJ, Röst H, et al. Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women. Cell 2020;181(7):1680-92.e15. http://dx.doi.org/10.1016/j.cell.2020.05.002CrossRef
[9] Toth R, Schiffmann H, Hube-Magg C, Büscheck F, Höflmayer D, Weidemann S, et al. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 2019;11(1):148. http://dx.doi.org/10.1186/s13148-019-0736-8CrossRef
[10] Chan KK, Dorosky D, Sharma P, Abbasi SA, Dye JM, Kranz DM, et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 2020;369(6508):1261-5. http://dx.doi.org/10.1126/science.abc0870CrossRef
[11] Wang QH, Zhang YF, Wu LL, Niu S, Song CL, Zhang ZY, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181(4):894-904.e9. http://dx.doi.org/10.1016/j.cell.2020.03.045CrossRef
[12] Liu YH, Hu GW, Wang YY, Ren WL, Zhao XM, Ji FS, et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci USA 2021;118(12):e2025373118. http://dx.doi.org/10.1073/pnas.2025373118CrossRef
[13] Wu LL, Chen Q, Liu KF, Wang J, Han PC, Zhang YF, et al. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov 2020;6:68. http://dx.doi.org/10.1038/s41421-020-00210-9CrossRef
[14] Liu KF, Pan XQ, Li LJ, Yu F, Zheng AQ, Du P, et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 2021;184(13):3438-51.e10. http://dx.doi.org/10.1016/j.cell.2021.05.031CrossRef