[1]
|
Tayyarcan EK, Evran E, Guven K, Ekiz E, Acar Soykut E, Boyaci IH. Evaluating the efficacy of a phage cocktail against Pseudomonas fluorescens group strains in raw milk: microbiological, physical, and chemical analyses. Arch Microbiol 2024;206(6):283. https://doi.org/10.1007/s00203-024-04008-1. |
[2]
|
Meng L, Zhang RR, Dong L, Hu HY, Liu HM, Zheng N, et al. Characterization and spoilage potential of Bacillus cereus isolated from farm environment and raw milk. Front Microbiol 2022;13:940611. https://doi.org/10.3389/fmicb.2022.940611. |
[3]
|
Kowalska J, Maćkiw E, Korsak D, Postupolski J. Prevalence of Bacillus cereus in food products in Poland. Ann Agric Environ Med 2024;31(1):8 − 12. https://doi.org/10.26444/aaem/168580. |
[4]
|
Amalfitano N, Patel N, Haddi ML, Benabid H, Pazzola M, Vacca GM, et al. Detailed mineral profile of milk, whey, and cheese from cows, buffaloes, goats, ewes, and dromedary camels, and efficiency of recovery of minerals in their cheese. J Dairy Sci 2024;107(11):8887 − 907. https://doi.org/10.3168/jds.2023-24624. |
[5]
|
Ma XJ. Isothermal amplification technology for diagnosis of COVID-19: current status and future prospects. Zoonoses 2022;2(1):5. https://doi.org/10.15212/zoonoses-2021-0022. |
[6]
|
Li FY, Guo YH, Sun ZL, Liu H, Zhao MC, Cui J, et al. Rapid two-stage amplification in a single tube for simultaneous detection of norovirus GII and group a rotavirus. J Clin Lab Anal 2023;37(5):e24858. https://doi.org/10.1002/jcla.24858. |
[7]
|
Nie MZ, Zhang RQ, Zhao MC, Tan H, Hu YX, Fan GH, et al. Development of a duplex recombinase-aided amplification assay for direct detection of Mycoplasma pneumoniae and Chlamydia trachomatis in clinical samples. J Microbiol Methods 2022;198:106504. https://doi.org/10.1016/j.mimet.2022.106504. |
[8]
|
Hoshika S, Chen F, Leal NA, Benner SA. Artificial genetic systems: self-avoiding DNA in PCR and multiplexed PCR. Angew Chem Int Ed 2010;49(32):5554 − 7. https://doi.org/10.1002/anie.201001977. |
[9]
|
Saladino R, Mincione E, Crestini C, Mezzetti M. Transformations of thiopyrimidine and thiopurine nucleosides following oxidation with dimethyldioxirane. Tetrahedron 1996;52(19):6759 − 80. https://doi.org/10.1016/0040-4020(96)00289-x. |
[10]
|
Sharma N, Hoshika S, Hutter D, Bradley KM, Benner SA. Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS). ChemBioChem 2014;15(15):2268 − 74. https://doi.org/10.1002/cbic.201402250. |
[11]
|
Yang ZY, McLendon C, Hutter D, Bradley KM, Hoshika S, Frye CB, et al. Helicase-dependent isothermal amplification of DNA and RNA by using self-avoiding molecular recognition systems. ChemBioChem 2015;16(9):1365 − 70. https://doi.org/10.1002/cbic.201500135. |
[12]
|
Yang ZY, Le JT, Hutter D, Bradley KM, Overton BR, McLendon C, et al. Eliminating primer dimers and improving SNP detection using self-avoiding molecular recognition systems. Biol Methods Protoc 2020;5(1):bpaa004. https://doi.org/10.1093/biomethods/bpaa004. |
[13]
|
Zheng Y, Hu P, Ren HL, Wang H, Cao Q, Zhao Q, et al. RPA-SYBR Green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat. Anal Biochem 2021;621:114157. https://doi.org/10.1016/j.ab.2021.114157. |
[14]
|
Tong SYC, Dakh F, Hurt AC, Deng YM, Freeman K, Fagan PK, et al. Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting. PLoS One 2011;6(6):e21446. https://doi.org/10.1371/journal.pone.0021446. |
[15]
|
Zhao ZJ, You YB, Hua SW, Shen XX, Li LJ, Ma XJ. Dye‐based recombinase‐aided amplification assay with enhanced sensitivity and specificity. iLABMED 2024;2(4):294 − 306. https://doi.org/10.1002/ila2.51. |