| [1] | Keilman LJ. Seasonal influenza (flu). Nurs Clin N Am 2019;54(2):227 − 43. https://doi.org/10.1016/j.cnur.2019.02.009. |
| [2] | Nypaver C, Dehlinger C, Carter C. Influenza and influenza vaccine: a review. J Midwifery Wom Heal 2021;66(1):45 − 53. https://doi.org/10.1111/jmwh.13203. |
| [3] | Mokalla VR, Gundarapu S, Kaushik RS, Rajput M, Tummala H. Influenza vaccines: current status, adjuvant strategies, and efficacy. Vaccines 2025;13(9):962. https://doi.org/10.3390/vaccines13090962. |
| [4] | Neumann G, Kawaoka Y. Which virus will cause the next pandemic? Viruses 2023;15(1):199. http://dx.doi.org/10.3390/v15010199. |
| [5] | Shi JZ, Zeng XY, Cui PF, Yan C, Chen HL. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infec 2023;12(1):2155072. https://doi.org/10.1080/22221751.2022.2155072. |
| [6] | Li CJ, Chen HL. H7N9 influenza virus in China. Cold Spring Harb Perspect Med 2021;11(8):a038349. https://doi.org/10.1101/cshperspect.a038349. |
| [7] | Wang L, Gao GF. A brief history of human infections with H5Ny avian influenza viruses. Cell Host Microbe 2025;33(2):176 − 81. https://doi.org/10.1016/j.chom.2025.01.010. |
| [8] | World Health Organization. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2023. Geneva: World Health Organization; 2023. https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who--2003-2023--3-october-2023. |
| [9] | Plaza PI, Gamarra-Toledo V, Euguí JR, Lambertucci SA. Recent changes in patterns of mammal infection with highly pathogenic avian influenza A(H5N1) virus worldwide. Emerg Infect Dis 2024;30(3):444 − 52. https://doi.org/10.3201/eid3003.231098. |
| [10] | Shi JZ, Kong HH, Cui PF, Deng GH, Zeng XY, Jiang YP, et al. H5N1 virus invades the mammary glands of dairy cattle through ‘mouth-to-teat’ transmission. Natl Sci Rev 2025;12(9):nwaf262. https://doi.org/10.1093/nsr/nwaf262. |
| [11] | Marchenko VY, Panova AS, Kolosova NP, Gudymo AS, Svyatchenko SV, Danilenko AV, et al. Characterization of H5N1 avian influenza virus isolated from bird in Russia with the E627K mutation in the PB2 protein. Sci Rep 2024;14(1):26490. https://doi.org/10.1038/s41598-024-78175-y. |
| [12] | Xiong JL, Ding SP, Zhou JT, Cui YQ, Chen XN, Huang LH, et al. Clade 2. 3.4.4b highly pathogenic H5N1 influenza viruses from birds in China replicate effectively in bovine cells and pose potential public health risk. Emerg Microbes Infec 2025;14(1):2505649. https://doi.org/10.1080/22221751.2025.2505649. |
| [13] | Elsmo EJ, Wunschmann A, Beckmen KB, Broughton-Neiswanger LE, Buckles EL, Ellis J, et al. Highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b infections in wild terrestrial mammals, United States, 2022. Emerg Infect Dis 2023;29(12):2451-60. http://dx.doi.org/10.3201/eid2912.230464. |
| [14] | Yang JY, Zhang Y, Yang L, Li XY, Bo H, Liu J, et al. Evolution of avian influenza virus (H3) with spillover into humans, China. Emerg Infect Dis 2023;29(6):1191 − 201. https://doi.org/10.3201/eid2906.221786. |
| [15] | Zhu WF, Yang L, Han X, Tan M, Zou SM, Li XY, et al. Origin, pathogenicity, and transmissibility of a human isolated influenza A(H10N3) virus from China. Emerg Microbes Infec 2025;14(1):2432364. https://doi.org/10.1080/22221751.2024.2432364. |
| [16] | Shi JR, Shen AL, Cheng Y, Zhang C, Yang XM. 30-year development of inactivated virus vaccine in China. Pharmaceutics 2023;15(12):2721. https://doi.org/10.3390/pharmaceutics15122721. |
| [17] | Zhang JY, Nian XX, Li XD, Huang SH, Duan K, Li XG, et al. The epidemiology of influenza and the associated vaccines development in China: a review. Vaccines 2022;10(11):1873. https://doi.org/10.3390/vaccines10111873. |
| [18] | Information on the delivery of pharmaceutical approval certification documents (October 10, 2025). National Medical Products Administration; 2025. https://www.nmpa.gov.cn/zwfw/sdxx/sdxxyp/yppjfb/20251010153004185.html. |
| [19] | Shi H, Ross TM. Inactivated recombinant influenza vaccine: the promising direction for the next generation of influenza vaccine. Expert Rev Vaccines 2024;23(1):409 − 18. https://doi.org/10.1080/14760584.2024.2333338. |
| [20] | Xu H, Zhu SY, Govinden R, Chenia HY. Multiple vaccines and strategies for pandemic preparedness of avian influenza virus. Viruses 2023;15(8):1694. https://doi.org/10.3390/v15081694. |
| [21] | Parvez S, Pathrathota A, Uppar AL, Yadagiri G, Mudavath SL. Influenza virus: global health impact, strategies, challenges, role of nanotechnolgy in influenza vaccine development. Vaccines 2025;13(9):890. https://doi.org/10.3390/vaccines13090890. |
| [22] | Khudainazarova NS, Granovskiy DL, Kondakova OA, Ryabchevskaya EM, Kovalenko AO, Evtushenko EA, et al. Prokaryote- and eukaryote-based expression systems: advances in post-pandemic viral antigen production for vaccines. Int J Mol Sci 2024;25(22):11979. https://doi.org/10.3390/ijms252211979. |
| [23] | Chen JJ, Chen JZ, Xu QB. Current developments and challenges of mRNA vaccines. Annu Rev Biomed Eng 2022;24:85 − 109. https://doi.org/10.1146/annurev-bioeng-110220-031722. |
| [24] | Rudometov AP, Litvinova VR, Gudymo AS, Ivanova KI, Rudometova NB, Kisakov DN, et al. Dose-dependent effect of DNA vaccine pVAX-H5 encoding a modified hemagglutinin of influenza A (H5N8) and its cross-reactivity against A (H5N1) influenza viruses of clade 2. 3.4.4b. Viruses 2025;17(3):330. https://doi.org/10.3390/v17030330. |
| [25] | Patel N, Rehman A, Trost JF, Flores R, Longacre Z, Guebre-Xabier M, et al. Single-dose avian influenza A(H5N1) clade 2. 3.4.4b hemagglutinin-Matrix-M® nanoparticle vaccine induces neutralizing responses in nonhuman primates. Nat Commun 2025;16(1):6625. https://doi.org/10.1038/s41467-025-61964-y. |
| [26] | CTV. Safety, reactogenicity, and immunogenicity study of a self-amplifying mRNA influenza vaccine in healthy adults. 2025. https://ctv.veeva.com/study/safety-reactogenicity-and-immunogenicity-study-of-a-self-amplifying-mrna-influenza-vaccine-in-heal. [2025-10-10]. |
| [27] | CTV. A study of mRNA-1018 pandemic influenza candidate vaccines in healthy adults. 2025. https://ctv.veeva.com/study/a-study-of-mrna-1018-pandemic-influenza-candidate-vaccines-in-healthy-adults. [2025-10-10]. |
| [28] | A study to find and confirm the dose and assess safety, reactogenicity and immune response of a vaccine against pandemic H5N1 influenza virus in healthy younger and older adults. 2025. https://trial.medpath.com/clinical-trial/6af52e87e7b65ce9/nct06382311-randomized-observer-blind-dose-finding-dose-confirmation-mrna-based-pandemic. [2025-10-10]. |
| [29] | Hardenberg G, Brouwer C, van Gemerden R, Jones NJ, Marriott AC, Rip J. Polymeric nanoparticle-based mRNA vaccine is protective against influenza virus infection in ferrets. Mol Ther Nucl Acids 2024;35(1):102159. https://doi.org/10.1016/j.omtn.2024.102159. |
| [30] | Yi DR, Liu Q, Guo SS, Li QJ, Zhang YX, Li N, et al. Chimeric hemagglutinin and M2 mRNA vaccine for broad influenza subtype protection. npj Vaccines 2025;10(1):113. https://doi.org/10.1038/s41541-025-01178-x. |
| [31] | Hao MC, Wang YH, Yang WX, Xu M, Guan YW, Zhang Y, et al. Epitope-optimized influenza hemagglutinin nanoparticle vaccine provides broad cross-reactive immunity against H9N2 influenza virus. ACS Nano 2025;19(22):20824 − 40. https://doi.org/10.1021/acsnano.5c03199. |
| [32] | Styles TM, Akhtar A, Gu CY, Neumann G, Muramatsu H, McPartlan JS, et al. Chimeric hemagglutinin-based universal influenza mRNA vaccine induces protective immunity and bone marrow plasma cells in rhesus macaques. Cell Rep Med 2025;6(10):102369. https://doi.org/10.1016/j.xcrm.2025.102369. |
| [33] | Center For Drug Evaluation. Detailed information of CTR20241054. http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml. |
| [34] | Center For Drug Evaluation. Detailed infoormation of CTR20241413. 2024. http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml. |
| [35] | Center for Drug Evaluation. Detailed information of CTR20233159. 2023. http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml?id=743a5631d4df4fd5a296777c87db0f1c. [2025-10-10].(In Chinese). |
| [36] | Center for Drug Evaluation. Detailed information of CTR20240729. 2023. https://www.yscro.com/index.php/cde/313ad820a3b87848355b390ce7c0c9ba.html. [2025-10-10]. (In Chinese). |
| [37] | Center for Drug Evaluation. Detailed information of CTR20250319. 2024. https://www.yscro.com/index.php/cde/87dd818ebf96472d8b486d3cee6f6d79.html.[2025-10-10]. (In Chinese). |
| [38] | Center For Drug Evaluation. Detailed information of CTR20254267. 2025. http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml. |
| [39] | Center for Drug Evaluation. Detailed information of CTR20250309. 2025. http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml?id=d06ff57863454e2dbd871b726768b746. [2025-10-10].(In Chinese). |
| [40] | Center for Drug Evaluation. Drug Clinical Trial Registration and Information Disclosure. 2024. https://www.cde.org.cn/main/xxgk/listpage/9f9c74c73e0f8f56a8bfbc646055026d. |
| [41] | Center for Drug Evaluation. Detailed information of CTR20254229. 2025. http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml. (In Chinese). |
| [42] | Wang DY, Shu YL. History and reflection of pandemic influenza. Sci Sin Vitae 2018;48(12):1247 − 51. https://doi.org/10.1360/N052018-00205. |
| [43] | Roepke KC, Howard KP. Conformation and membrane topology of the N-terminal ectodomain of influenza A M2 protein. Membranes 2025;15(2):40. https://doi.org/10.3390/membranes15020040. |
| [44] | Kim H, Webster RG, Webby RJ. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol 2018;31(2):174 − 83. https://doi.org/10.1089/vim.2017.0141. |
| [45] | Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the development of a universal influenza vaccine. Viruses 2022;14(8):1684. https://doi.org/10.3390/v14081684. |
| [46] | Facciolà A, Visalli G, Laganà A, Di Pietro A. An overview of vaccine adjuvants: current evidence and future perspectives. Vaccines 2022;10(5):819. https://doi.org/10.3390/vaccines10050819. |
| [47] | Taaffe J, Ostrowsky JT, Mott J, Goldin S, Friede M, Gsell P, et al. Advancing influenza vaccines: a review of next-generation candidates and their potential for global health impact. Vaccine 2024;42(26):126408. https://doi.org/10.1016/j.vaccine.2024.126408. |
| [48] | Chen L, Guo YC, López-Güell K, Ma J, Dong YH, Xie JQ, et al. Immunity debt for seasonal influenza after the COVID-19 pandemic and as a result of nonpharmaceutical interventions: an ecological analysis and cohort study. Adv Sci 2025;12(20):2410513. https://doi.org/10.1002/advs.202410513. |