[1] Moss WJ. Measles. Lancet 2017;390(10111):2490 − 502. https://doi.org/10.1016/S0140-6736(17)31463-0.
[2] Ikegame S, Hashiguchi T, Hung CT, Dobrindt K, Brennand KJ, Takeda M, et al. Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proc Natl Acad Sci USA 2021;118(18):e2026027118. https://doi.org/10.1073/pnas.2026027118.
[3] Bidari S, Yang W. Global resurgence of measles in the vaccination era and influencing factors. Int J Infect Dis 2024;147:107189. https://doi.org/10.1016/j.ijid.2024.107189.
[4] WHO. Measles - United States of America. 2025. https://www.who.int/emergencies/disease-outbreak-news/item/2025-DON561. [2025-3-27]
[5] Lutz CS, Hasan AZ, Bolotin S, Crowcroft NS, Cutts FT, Joh E, et al. Comparison of measles IgG enzyme immunoassays (EIA) versus plaque reduction neutralization test (PRNT) for measuring measles serostatus: a systematic review of head-to-head analyses of measles IgG EIA and PRNT. BMC Infect Dis 2023;23(1):367. https://doi.org/10.1186/s12879-023-08199-8.
[6] Liang ZT, Wu X, Wu JJ, Liu S, Tong JC, Li T, et al. Development of an automated, high-throughput SARS-CoV-2 neutralization assay based on a pseudotyped virus using a vesicular stomatitis virus (VSV) vector. Emerg Microbes Infect 2023;12(2):e2261566. https://doi.org/10.1080/22221751.2023.2261566.
[7] Rota PA, Moss WJ, Takeda M, de Swart RL, Thompson KM, Goodson JL. Measles. Nat Rev Dis Primers 2016;2(1):16049. https://doi.org/10.1038/nrdp.2016.49.
[8] Tahir IM, Kumar V, Faisal H, Gill A, Kumari V, Tahir HM, et al. Contagion comeback: unravelling the measles outbreak across the USA. Front Public Health 2024;12:1491927. https://doi.org/10.3389/fpubh.2024.1491927.
[9] Minta AA, Ferrari M, Antoni S, Lambert B, Sayi TS, Hsu CH, et al. Progress toward measles elimination — worldwide, 2000–2023. MMWR Morb Mortal Wkly Rep 2024;73(45):1036 − 42. https://doi.org/10.15585/mmwr.mm7345a4.
[10] Bankamp B, Kim G, Hart D, Beck A, Ben Mamou M, Penedos A, et al. Global update on measles molecular epidemiology. Vaccines 2024;12(7):810. https://doi.org/10.3390/vaccines12070810.
[11] Ertl OT, Wenz DC, Bouche FB, Berbers GAM, Muller CP. Immunodominant domains of the Measles virus hemagglutinin protein eliciting a neutralizing human B cell response. Arch Virol 2003;148(11):2195 − 206. https://doi.org/10.1007/s00705-003-0159-9.
[12] Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol 2011;18(2):135 − 41. https://doi.org/10.1038/nsmb.1969.
[13] Ziegler D, Fournier P, Berbers GAH, Steuer H, Wiesmüller KH, Fleckenstein B, et al. Protection against measles virus encephalitis by monoclonal antibodies binding to a cystine loop domain of the H protein mimicked by peptides which are not recognized by maternal antibodies. J Gen Virol 1996;77(10):2479 − 89. https://doi.org/10.1099/0022-1317-77-10-2479.
[14] Wang QL, Wang W, Winter AK, Zhan ZF, Ajelli M, Trentini F, et al. Long-term measles antibody profiles following different vaccine schedules in China, a longitudinal study. Nat Commun 2023;14(1):1746. https://doi.org/10.1038/s41467-023-37407-x.
[15] Hu Y, Lu PS, Deng XY, Guo HX, Zhou MH. The declining antibody level of measles virus in China population, 2009-2015. BMC Public Health 2018;18(1):906. https://doi.org/10.1186/s12889-018-5759-0.