[1] Parola P. Tick-borne rickettsial diseases: emerging risks in Europe. Comp Immunol Microbiol Infect Dis 2004;27(5):297 − 304. https://doi.org/10.1016/j.cimid.2004.03.006.
[2] Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 2012;28(10):437 − 46. https://doi.org/10.1016/j.pt.2012.07.003.
[3] Zhang YK, Zhang XY, Liu JZ. Ticks (Acari: Ixodoidea) in China: geographical distribution, host diversity, and specificity. Arch Insect Biochem Physiol 2019;102(3):e21544. https://doi.org/10.1002/arch.21544.
[4] Coutts C, Hahn M. Green infrastructure, ecosystem services, and human health. Int J Environ Res Public Health 2015;12(8):9768 − 98. https://doi.org/10.3390/ijerph120809768.
[5] Kolomiiets V, Rakowska P, Rymaszewska A. New problems of environmental ecology: ticks and tick-borne pathogens in city parks of Ukraine. Environ Microbiol Rep 2022;14(4):591 − 4. https://doi.org/10.1111/1758-2229.13075.
[6] Combs MA, Kache PA, VanAcker MC, Gregory N, Plimpton LD, Tufts DM, et al. Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob Chang Biol 2022;28(5):1705 − 24. https://doi.org/10.1111/gcb.16033.
[7] Mackenstedt U, Jenkins D, Romig T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int J Parasitol Parasites Wildl 2015;4(1):71 − 9. https://doi.org/10.1016/j.ijppaw.2015.01.006.
[8] Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George JC, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors 2013;6:1. https://doi.org/10.1186/1756-3305-6-1.
[9] Hansford KM, Wheeler BW, Tschirren B, Medlock JM. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: a review. Zoonoses Public Health 2022;69(3):153 − 66. https://doi.org/10.1111/zph.12913.
[10] Skuballa J, Petney T, Pfäffle M, Oehme R, Hartelt K, Fingerle V, et al. Occurrence of different Borrelia burgdorferi sensu lato genospecies including B. afzelii, B. bavariensis, and B. spielmanii in hedgehogs (Erinaceus spp.) in Europe. Ticks Tick Borne Dis 2012;3(1):8 − 13. https://doi.org/10.1016/j.ttbdis.2011.09.008.
[11] Stewart PE, Bloom ME. Sharing the ride: Ixodes scapularis symbionts and their interactions. Front Cell Infect Microbiol 2020;10:142. https://doi.org/10.3389/fcimb.2020.00142.
[12] Mathews-Martin L, Namèche M, Vourc'h G, Gasser S, Lebert I, Poux V, et al. Questing tick abundance in urban and peri-urban parks in the French city of Lyon. Parasit Vectors 2020;13(1):576. https://doi.org/10.1186/s13071-020-04451-1.
[13] Cheng ML, Su T, Eremeeva M, Hu R. Species composition, seasonal abundance, pathogen detection in ticks collected in southwestern San Bernardino County, California. In: Proceedings of the 79th annual meeting of mosquito and vector control association of California. Indian Wells, California, USA. 2011.
[14] Pakanen VM, Sormunen JJ, Sippola E, Blomqvist D, Kallio ER. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution. Parasit Vectors 2020;13(1):384. https://doi.org/10.1186/s13071-020-04259-z.
[15] Romanenko V, Leonovich S. Long-term monitoring and population dynamics of ixodid ticks in Tomsk city (Western Siberia). Exp Appl Acarol 2015;66(1):103 − 18. https://doi.org/10.1007/s10493-015-9879-2.
[16] Matuschka FR, Richter D, Fischer P, Spielman A. Nocturnal detachment of the tick Ixodes hexagonus from nocturnally active hosts. Med Vet Entomol 1990;4(4):415 − 20. https://doi.org/10.1111/j.1365-2915.1990.tb00459.x.
[17] Dziemian S, Michalik J, Pi Łacińska B, Bialik S, Sikora B, Zwolak R. Infestation of urban populations of the Northern white-breasted hedgehog, Erinaceus roumanicus, by Ixodes spp. ticks in Poland. Med Vet Entomol 2014;28(4):465 − 9. https://doi.org/10.1111/mve.12065.
[18] Jahfari S, Ruyts SC, Frazer-Mendelewska E, Jaarsma R, Verheyen K, Sprong H. Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit Vectors 2017;10(1):134. https://doi.org/10.1186/s13071-017-2065-0.
[19] Rubel F, Dautel H, Nijhof AM, Kahl O. Ticks in the metropolitan area of Berlin, Germany. Ticks Tick-Borne Dis 2022;13(6):102029. https://doi.org/10.1016/j.ttbdis.2022.102029.
[20] Nwanade CF, Wang M, Li SS, Yu ZJ, Liu JZ. The current strategies and underlying mechanisms in the control of the vector tick, Haemaphysalis longicornis: implications for future integrated management. Ticks Tick-Borne Dis 2022;13(2):101905. https://doi.org/10.1016/j.ttbdis.2022.101905.
[21] Chong ST, Kim HC, Lee IY, Kollars TM Jr, Sancho AR, Sames WJ, et al. Comparison of dragging and sweeping methods for collecting ticks and determining their seasonal distributions for various habitats, Gyeonggi Province, Republic of Korea. J Med Entomol 2013;50(3):611 − 8. https://doi.org/10.1603/ME12032.
[22] Zheng HY, Yu ZJ, Zhou LF, Yang XL, Liu JZ. Seasonal abundance and activity of the hard tick Haemaphysalis longicornis (Acari: Ixodidae) in North China. Exp Appl Acarol 2012;56(2):133 − 41. https://doi.org/10.1007/s10493-011-9505-x.
[23] Qi Y, Ai LL, Jiao J, Wang JH, Wu DP, Wang PC, et al. High prevalence of Rickettsia spp. in ticks from wild hedgehogs rather than domestic bovine in Jiangsu province, Eastern China. Front Cell Infect Microbiol 2022;12:954785. https://doi.org/10.3389/fcimb.2022.954785.
[24] Iwakami S, Ichikawa Y, Inokuma H. A nationwide survey of ixodid tick species recovered from domestic dogs and cats in Japan in 2011. Ticks Tick-Borne Dis 2014;5(6):771 − 9. https://doi.org/10.1016/j.ttbdis.2014.05.008.
[25] Kim HG, Jung M, Lee DH. Seasonal activity of Haemaphysalis longicornis and Haemaphysalis flava (Acari: Ixodida), vectors of severe fever with thrombocytopenia syndrome (SFTS) virus, and their SFTS virus harboring rates in Gyeonggi Province, South Korea. Exp Appl Acarol 2022;87(1):97 − 108. https://doi.org/10.1007/s10493-022-00722-x.
[26] Zeng WB, Li ZQ, Jiang TG, Cheng DH, Yang LM, Hang T, et al. Identification of bacterial communities and tick-borne pathogens in Haemaphysalis spp. collected from Shanghai, China. Trop Med Infect Dis 2022;7(12):413. https://doi.org/10.3390/tropicalmed7120413.
[27] Shimada Y, Beppu T, Inokuma H, Okuda M, Onishi T. Ixodid tick species recovered from domestic dogs in Japan. Med Vet Entomol 2003;17(1):38 − 45. https://doi.org/10.1046/j.1365-2915.2003.00403.x.
[28] McClung KL, Little SE. Amblyomma americanum (Lone star tick). Trends Parasitol 2023;39(1):70 − 1. https://doi.org/10.1016/j.pt.2022.10.005.
[29] Small M, Brennan RE. Detection of Rickettsia amblyommatis and Ehrlichia chaffeensis in Amblyomma americanum inhabiting two urban parks in Oklahoma. Vector-Borne Zoonotic Dis 2021;21(5):385 − 7. https://doi.org/10.1089/vbz.2020.2755.
[30] Zając Z, Bartosik K, Woźniak A. Monitoring Dermacentor reticulatus host-seeking activity in natural conditions. Insects 2020;11(5):264. https://doi.org/10.3390/insects11050264.
[31] Duscher GG, Feiler A, Leschnik M, Joachim A. Seasonal and spatial distribution of ixodid tick species feeding on naturally infested dogs from Eastern Austria and the influence of acaricides/repellents on these parameters. Parasit Vectors 2013;6:76. https://doi.org/10.1186/1756-3305-6-76.
[32] Olivieri E, Gazzonis AL, Zanzani SA, Veronesi F, Manfredi MT. Seasonal dynamics of adult Dermacentor reticulatus in a peri-urban park in southern Europe. Ticks Tick-Borne Dis 2017;8(5):772 − 9. https://doi.org/10.1016/j.ttbdis.2017.06.002.
[33] MacDonald AJ. Abiotic and habitat drivers of tick vector abundance, diversity, phenology and human encounter risk in southern California. PLoS One 2018;13(7):e0201665. https://doi.org/10.1371/journal.pone.0201665.
[34] Paddock CD, Zambrano ML, Clover JR, Ladd-Wilson S, Dykstra EA, Salamone A, et al. Rickettsia species identified in adult, host-seeking Dermacentor occidentalis (Acari: Ixodidae) from Baja California, Mexico, and Oregon and Washington, United States. J Med Entomol 2024;61(3):781 − 90. https://doi.org/10.1093/jme/tjae023.
[35] Myers S, Duncan K. Dermacentor variabilis (American dog tick). Trends Parasitol 2024;40(3):273 − 4. https://doi.org/10.1016/j.pt.2024.01.001.
[36] Noden BH, Roselli MA, Loss SR. Factors influencing abundance of 3 tick species across a gradient of urban development intensity in the US Great Plains. J Med Entomol 2024;61(1):233 − 44. https://doi.org/10.1093/jme/tjad132.
[37] Blanton LS, Walker DH, Bouyer DH. Rickettsiae and ehrlichiae within a city park: is the urban dweller at risk? Vector Borne Zoonotic Dis 2014;14(2):168-70. http://dx.doi.org/10.1089/vbz.2013.1473.
[38] Noden BH, Loss SR, Maichak C, Williams F. Risk of encountering ticks and tick-borne pathogens in a rapidly growing metropolitan area in the U. S. Great Plains. Ticks Tick-Borne Dis 2017;8(1):119 − 24. https://doi.org/10.1016/j.ttbdis.2016.10.007.
[39] Dantas-Torres F, Otranto D. Rhipicephalus sanguineus (Brown dog tick). Trends Parasitol 2022;38(11):993 − 4. https://doi.org/10.1016/j.pt.2022.08.011.
[40] Szabó MP, Pinter A, Labruna MB. Ecology, biology and distribution of spotted-fever tick vectors in Brazil. Front Cell Infect Microbiol 2013;3:27. https://doi.org/10.3389/fcimb.2013.00027.
[41] Zazueta OE, Armstrong PA, Márquez-Elguea A, Hernández Milán NS, Peterson AE, Ovalle-Marroquín DF, et al. Rocky mountain spotted fever in a large metropolitan center, Mexico-United States border, 2009-2019. Emerg Infect Dis 2021;27(6):1567 − 76. https://doi.org/10.3201/eid2706.191662.
[42] van Wyk CL, Mtshali K, Taioe MO, Terera S, Bakkes D, Ramatla T, et al. Detection of ticks and tick-borne pathogens of urban stray dogs in South Africa. Pathogens 2022;11(8):862. https://doi.org/10.3390/pathogens11080862.
[43] Muñoz-Leal S, Lopes MG, Marcili A, Martins TF, González-Acuña D, Labruna MB. Anaplasmataceae, Borrelia and Hepatozoon agents in ticks (Acari: Argasidae, Ixodidae) from Chile. Acta Trop 2019;192:91 − 103. https://doi.org/10.1016/j.actatropica.2019.02.002.
[44] Mans BJ, Gothe R, Neitz AWH. Biochemical perspectives on paralysis and other forms of toxicoses caused by ticks. Parasitology 2004;129 Suppl:S95-111. http://dx.doi.org/10.1017/s0031182003004670.
[45] Llanos-Soto S, Muñoz-Leal S, Gatica JL, Misad C, González-Acuña D. Human toxicosis caused by the tick Ornithodoros spheniscus in a Chilean national park. Travel Med Infect Dis 2020;37:101811. https://doi.org/10.1016/j.tmaid.2020.101811.
[46] Donaldson TG, Pèrez de León AA, Li AI, Castro-Arellano I, Wozniak E, Boyle WK, et al. Assessment of the geographic distribution of Ornithodoros turicata (argasidae): climate variation and host diversity. PLoS Negl Trop Dis 2016;10(2):e0004383. https://doi.org/10.1371/journal.pntd.0004383.
[47] Barraza-Guerrero SI, Meza-Herrera CA, García-De la Peña C, González-Álvarez VH, Vaca-Paniagua F, Díaz-Velásquez CE, et al. General microbiota of the soft tick Ornithodoros turicata parasitizing the bolson tortoise (Gopherus flavomarginatus) in the Mapimi biosphere reserve, Mexico. Biology (Basel) 2020;9(9):275. https://doi.org/10.3390/biology9090275.
[48] Bissett JD, Ledet S, Krishnavajhala A, Armstrong BA, Klioueva A, Sexton C, et al. Detection of tickborne relapsing fever spirochete, Austin, Texas, USA. Emerg Infect Dis 2018;24(11):2003 − 9. https://doi.org/10.3201/eid2411.172033.
[49] Gaffuri A, Sassera D, Calzolari M, Gibelli L, Lelli D, Tebaldi A, et al. Tick-borne encephalitis, Lombardy, Italy. Emerg Infect Dis 2024;30(2):341 − 4. https://doi.org/10.3201/eid3002.231016.
[50] Kahl O, Bulling I, Chitimia-Dobler L. Some new findings on the endophilic vector tick Ixodes hexagonus in Germany. Ticks Tick-Borne Dis 2022;13(4):101954. https://doi.org/10.1016/j.ttbdis.2022.101954.
[51] Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 2011;364(16):1523 − 32. https://doi.org/10.1056/NEJMoa1010095.
[52] Yun SM, Lee WG, Ryou J, Yang SC, Park SW, Roh JY, et al. Severe fever with thrombocytopenia syndrome virus in ticks collected from humans, South Korea, 2013. Emerg Infect Dis 2014;20(8):1358 − 61. https://doi.org/10.3201/eid2008.131857.
[53] Park SW, Ryou J, Choi WY, Han MG, Lee WJ. Epidemiological and clinical features of severe fever with thrombocytopenia syndrome during an outbreak in South Korea, 2013-2015. Am J Trop Med Hyg 2016;95(6):1358 − 61. https://doi.org/10.4269/ajtmh.16-0251.
[54] Park SW, Song BG, Shin EH, Yun SM, Han MG, Park MY, et al. Prevalence of severe fever with thrombocytopenia syndrome virus in Haemaphysalis longicornis ticks in South Korea. Ticks Tick-Borne Dis 2014;5(6):975 − 7. https://doi.org/10.1016/j.ttbdis.2014.07.020.
[55] Liu Q, He B, Huang SY, Wei F, Zhu XQ. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis 2014;14(8):763 − 72. https://doi.org/10.1016/S1473-3099(14)70718-2.
[56] Azad AF, Beard CB. Rickettsial pathogens and their arthropod vectors. Emerg Infect Dis 1998;4(2):179 − 86. https://doi.org/10.3201/eid0402.980205.
[57] Karbowiak G, Biernat B, Stańczak J, Szewczyk T, Werszko J. The role of particular tick developmental stages in the circulation of tick-borne pathogens affecting humans in Central Europe. 3. Rickettsiae. Ann Parasitol 2016;62(2):89 − 100. https://doi.org/10.17420/ap6202.38.
[58] Whitworth T, Popov V, Han V, Bouyer D, Stenos J, Graves S, et al. Ultrastructural and genetic evidence of a reptilian tick, Aponomma hydrosauri, as a host of Rickettsia honei in Australia: possible transovarial transmission. Ann N Y Acad Sci 2003;990(1):67 − 74. https://doi.org/10.1111/j.1749-6632.2003.tb07339.x.
[59] Salomon J, Fernandez Santos NA, Zecca IB, Estrada-Franco JG, Davila E, Hamer GL, et al. Brown dog tick (Rhipicephalus sanguineus sensu lato) infection with endosymbiont and human pathogenic Rickettsia spp. , in northeastern México. Int J Environ Res Public Health 2022;19(10):6249. https://doi.org/10.3390/ijerph19106249.
[60] Vaculová T, Derdáková M, Špitalská E, Václav R, Chvostáč M, Rusňáková Tarageľová V. Simultaneous occurrence of Borrelia miyamotoi, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Rickettsia helvetica in Ixodes ricinus ticks in urban foci in Bratislava, Slovakia. Acta Parasitol 2019;64(1):19 − 30. https://doi.org/10.2478/s11686-018-00004-w.
[61] Padgett KA, Bonilla D, Eremeeva ME, Glaser C, Lane RS, Porse CC, et al. The eco-epidemiology of pacific coast tick fever in California. PLoS Negl Trop Dis 2016;10(10):e0005020. https://doi.org/10.1371/journal.pntd.0005020.
[62] Prusinski M, O'Connor C, Russell A, Sommer J, White J, Rose L, et al. Associations of Anaplasma phagocytophilum bacteria variants in Ixodes scapularis ticks and humans, New York, USA. Emerg Infect Dis 2023;29(3):540 − 50. https://doi.org/10.3201/eid2903.220320.
[63] Zhuo M, Calev H, Saunders SJ, Li JH, Stillman IE, Danziger J. Acute kidney injury associated with human granulocytic anaplasmosis: a case report. Am J Kidney Dis 2019;74(5):696 − 9. https://doi.org/10.1053/j.ajkd.2019.03.428.
[64] Didyk YM, Blaňárová L, Pogrebnyak S, Akimov I, Peťko B, Víchová B. Emergence of tick-borne pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Ricketsia raoultii and Babesia microti) in the Kyiv urban parks, Ukraine. Ticks Tick-Borne Dis 2017;8(2):219 − 25. https://doi.org/10.1016/j.ttbdis.2016.10.002.
[65] Hamel D, Silaghi C, Zapadynska S, Kudrin A, Pfister K. Vector-borne pathogens in ticks and EDTA-blood samples collected from client-owned dogs, Kiev, Ukraine. Ticks Tick-Borne Dis 2013;4(1-2):152 − 5. https://doi.org/10.1016/j.ttbdis.2012.08.005.
[66] Földvári G, Jahfari S, Rigó K, Jablonszky M, Szekeres S, Majoros G, et al. Candidatus neoehrlichia mikurensis and Anaplasma phagocytophilum in urban hedgehogs. Emerg Infect Dis 2014;20(3):496 − 8. https://doi.org/10.3201/eid2003.130935.
[67] Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nat Rev Microbiol 2020;18(10):587 − 600. https://doi.org/10.1038/s41579-020-0400-5.
[68] Sormunen JJ, Kulha N, Klemola T, Mäkelä S, Vesilahti EM, Vesterinen EJ. Enhanced threat of tick-borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland. Zoonoses Public Health 2020;67(7):823 − 39. https://doi.org/10.1111/zph.12767.
[69] Piedmonte NP, Shaw SB, Prusinski MA, Fierke MK. Landscape features associated with blacklegged tick (Acari: Ixodidae) density and tick-borne pathogen prevalence at multiple spatial scales in central New York state. J Med Entomol 2018;55(6):1496 − 508. https://doi.org/10.1093/jme/tjy111.
[70] Gray JS, Estrada-Peña A, Zintl A. Vectors of babesiosis. Annu Rev Entomol 2019;64:149 − 65. https://doi.org/10.1146/annurev-ento-011118-111932.
[71] Lemieux JE, Tran AD, Freimark L, Schaffner SF, Goethert H, Andersen KG, et al. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nat Microbiol 2016;1(7):16079. https://doi.org/10.1038/nmicrobiol.2016.79.
[72] Yabsley MJ, Shock BC. Natural history of Zoonotic Babesia: role of wildlife reservoirs. Int J Parasitol Parasites Wildl 2012;2:18 − 31. https://doi.org/10.1016/j.ijppaw.2012.11.003.
[73] Wang SS, Liu JY, Wang BY, Wang WJ, Cui XM, Jiang JF, et al. Geographical distribution of Ixodes persulcatus and associated pathogens: analysis of integrated data from a China field survey and global published data. One Health 2023;16:100508. https://doi.org/10.1016/j.onehlt.2023.100508.
[74] Gebreyes WA, Dupouy-Camet J, Newport MJ, Oliveira CJB, Schlesinger LS, Saif YM, et al. The global one health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. PLoS Negl Trop Dis 2014;8(11):e3257. https://doi.org/10.1371/journal.pntd.0003257.
[75] Ub GR, Narladkar BW. Role of entomopathogenic fungi in tick control: a Review. J Entomol Zool Stud 2018;6(1):1265-9. https://www.entomoljournal.com/archives/2018/vol6issue1/PartR/6-1-112-205.pdf.
[76] Sonenshine DE. Tick pheromones and their use in tick control. Annu Rev Entomol 2006;51:557 − 80. https://doi.org/10.1146/annurev.ento.51.110104.151150.
[77] Allan SA, inventor; Sonenshine DE, inventor; Burridge MJ, inventor. Tick pheromones and uses thereof. United States patent US 6331297. 2001 Dec 18. https://www.ars.usda.gov/research/publications/publication/?seqNo115=131819.
[78] Benelli G, Pavela R, Canale A, Mehlhorn H. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 2016;115(7):2545-60. http://dx.doi.org/10.1007/s00436-016-5095-1.
[79] Araújo PS, Caixeta MB, Canedo A, da Silva Nunes E, Monteiro C, Rocha TL. Toxicity of plant-based silver nanoparticles to vectors and intermediate hosts: historical review and trends. Sci Total Environ 2022;834:155299. https://doi.org/10.1016/j.scitotenv.2022.155299.
[80] Wu YY, Ling F, Chen ZP, Lin JF, Shang XP, Hou J, et al. Lethal activity of propylene glycol alginate against Haemaphysalis longicornis larvae. Chin J Vector Biol Control 2017;28(1):16 − 9. https://doi.org/10.11853/j.issn.1003.8280.2017.01.005.
[81] Brianti E, Falsone L, Napoli E, Prudente C, Gaglio G, Giannetto S. Efficacy of a combination of 10% imidacloprid and 4. 5% flumethrin (Seresto®) in slow release collars to control ticks and fleas in highly infested dog communities. Parasit Vectors 2013;6:210. https://doi.org/10.1186/1756-3305-6-210.
[82] Brianti E, Pennisi MG, Brucato G, Risitano AL, Gaglio G, Lombardo G, et al. Efficacy of the fipronil 10%+(S)-methoprene 9% combination against Rhipicephalus sanguineus in naturally infested dogs: speed of kill, persistent efficacy on immature and adult stages and effect of water. Vet Parasitol 2010;170(1-2):96 − 103. https://doi.org/10.1016/j.vetpar.2010.01.033.
[83] Borges LMF, de Sousa LAD, da Silva Barbosa C. Perspectives for the use of plant extracts to control the cattle tick Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet 2011;20(2):89 − 96. https://doi.org/10.1590/s1984-29612011000200001.
[84] Haag-Wackernagel D. Regulation of the street pigeon in Basel. Wildl Soc Bull 1995;23(2):256-60. https://www.jstor.org/stable/3782800.
[85] Drelich A, Andreassen Å, Vainio K, Kruszyński P, Wąsik TJ. Prevalence of tick-borne encephalitis virus in a highly urbanized and low risk area in Southern Poland. Ticks Tick-Borne Dis 2014;5(6):663 − 7. https://doi.org/10.1016/j.ttbdis.2014.04.020.
[86] Bayles BR, Evans G, Allan BF. Knowledge and prevention of tick-borne diseases vary across an urban-to-rural human land-use gradient. Ticks Tick-Borne Dis 2013;4(4):352 − 8. https://doi.org/10.1016/j.ttbdis.2013.01.001.
[87] Uspensky I. Tick pests and vectors (Acari: Ixodoidea) in European towns: introduction, persistence and management. Ticks Tick-Borne Dis 2014;5(1):41 − 7. https://doi.org/10.1016/j.ttbdis.2013.07.011.
[88] Ge B, Li XC, Zhang Y, Zhang HB, Hu XD, Zhou YB, et al. Investigation on the knowledge of tick in those with high frequency contact poultry and livestock in Fengxian district of Shanghai. Chin J Hyg Insect Equip 2020;26(4):379 − 82. https://doi.org/10.19821/j.1671-2781.2020.04.024.
[89] Cao GP, Zhan BD, Zhong JY, Yu ZY, Zhang JM, Chen ZB, et al. Status of tick distribution and tick-borne pathogens in urban parks of Quzhou, Zhejiang, 2017-2019. Dis Surveill 2021;36(9):879 − 83. https://doi.org/10.3784/jbjc.202106010314.
[90] Mader EM, Ganser C, Geiger A, Harrington LC, Foley J, Smith RL, et al. A survey of tick surveillance and control practices in the United States. J Med Entomol 2021;58(4):1503 − 12. https://doi.org/10.1093/jme/tjaa094.
[91] Machtinger ET, Poh KC, Pesapane R, Tufts DM. An integrative framework for tick management: the need to connect wildlife science, One Health, and interdisciplinary perspectives. Curr Opin Insect Sci 2024;61:101131. https://doi.org/10.1016/j.cois.2023.101131.