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Methods and Applications

The Establishment and Application of a Kraken Classifier for
Salmonella Plasmid Sequence Prediction

Zhenpeng Li'; Bo Pang'; Xin Lu'%; Biao Kan'**

ABSTRACT

Introduction: Salmonella is a key intestinal
pathogen of foodborne disease, and the plasmids in
Salmonella  are  related  to biological
characteristics, including virulence and drug resistance.
A large number of plasmid contigs have been
sequenced in bacterial draft genomes, however, these
are often difficult to distinguish from chromosomal
contigs.

Methods: In this study, three different customized
Kraken databases were used to build three different
Kraken classifiers. Complete genome benchmark
datasets and simulated draft genome benchmark
datasets were constructed. Five-fold cross-validation
was used to evaluate the performance of the three
different Kraken classifiers by two benchmark datasets.

Results: The predictive performance of the
classifier based on all National Center for
Biotechnology Information plasmids and Salmonella
complete genomes was optimal. This optimal Kraken
classifier was performed with Salmonella isolated in
China. The plasmid carrying rate of Salmonella in
China is 91.01%, and it was found that the Kraken
classifier could find more plasmid contigs and
antibiotic resistance genes (ARGs) than results derived
plasmid  replicon-based =~ method
(PlasmidFinder). Moreover, it was found that in the
strains carrying ARGs, plasmids carried more ARGs
[three, 95% confidence interval (CI): 1-14] than
chromosomes (one, 95% CI: 1-7).

Discussion: We found building a high-quality
customized database as a Kraken classifier to be ideal
for the prediction of Salmonella plasmid sequences
from bacterial draft genomes. In the future, the Kraken
classifier established in this study will play a significant
role in ARG monitoring,.
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Salmonella is an important intestinal pathogen of
foodborne disease, causing enteritis and bloodstream
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infections, among other serious consequences,
transmitted by food and water. Plasmid genome sizes
in Salmonella enterica are generally between 2 kb and
200 kb and are biased based on serotype (). As an
important mobile genetic element (MGE), plasmids in
Salmonella  endow strains with many biological
characteristics, including toxin production, resistance
to heavy metals, antibiotic resistance genes (ARGs),
and prophage integration (2-4). The spread of
plasmid-borne ARGs has become a global public
health problem, and plasmids, as reservoirs of ARGs,
can spread rapidly between different species, including
human pathogens (5-6). Therefore, it is necessary to
monitor the ARGs carried by plasmids for the
evaluation of ARG transmission.

Salmonella  genome analyses based on next-
generation sequence techniques have become an
important tool for infectious disease surveillance,
prevention and control, and food safety management.
Currently, it is challenging to distinguish the full
genomes of the chromosomes versus the plasmids
without using long-read sequencing. It is very
important to obtain the complete genomes of these
MGEs for understanding plasmid origins and
contributions to strain adaptability. To solve this
problem, several plasmid sequence prediction methods
have been developed, including Kraken (), cBar (8),
PlasFlow (9), RFPlasmid (7/0), mlplasmids (77) and
PlasmidFinder (/2). The Kraken classifier is an ultra-
fast and highly accurate species classification program
for sequences, and the Kraken classifier-based method
has the highest accuracy and balanced performance in
terms of overall sensitivity and specificity among the
compared methods in the prediction of plasmid
sequences in Klebsiella pneumoniae (13).

In our study, three customized Kraken databases
were constructed using three different plasmid datasets
and a Salmonella chromosomal dataset. These formed
three different Kraken classifiers. A five-fold cross-
validation method was wused to evaluate the
performance of the three Kraken classifiers using two
different benchmark datasets. Finally, the optimal
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Kraken classifier was used to predict the plasmid
sequence contigs from the genomes of Salmonella
strains isolated in China, and plasmid-carrying
prevalence and plasmid-borne ARGs were estimated.

METHODS

Three Customized Kraken Databases

Three  customized Kraken  databases were
constructed (Figure 1A); each dataset included a
plasmid dataset and a chromosome dataset. The
plasmid datasets were the National Center for
Biotechnology Information (NCBI) plasmid dataset,
an Enterobacteriaceae bacterial plasmid dataset, and a
Salmonella plasmid dataset, which contained 46,033,
19,853, and 1,591 plasmid sequences, respectively.
The chromosome dataset comprised 2,001 Salmonella
complete genomes. Therefore, our customized Kraken
database A was composed of 2,001 Salmonella
complete genomes and 1,591 Salmonella plasmids. Our
customized Kraken database B was composed of 2,001
Salmonella ~ complete  genomes  and 19,853
Enterobacteriaceae  bacterial ~ plasmids. And  our
customized Kraken database C was composed of 2,001
Salmonella complete genomes and all 46,033 NCBI
bacterial plasmids. The download address of the NCBI
plasmid  dataset is  https:/ftp.ncbi.nlm.nih.gov/
genomes/refseq/plasmid. The Salmonella  complete
genomes were downloaded from NCBI fip
(hteps://ftp.ncbi.nlm.nih.gov/genomes/genbank/). The

Enterobacteriaceae  bacterial ~ plasmid  dataset was

A
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constructed by extracting all sequences belonging to
the Enterobacteriaceae from the NCBI plasmid dataset.
Likewise, the Salmonella plasmid dataset was extracted
in a similar manner. Kraken version 1.0 (7) was used to
build our Kraken classifier. Operation of the Kraken
classifier followed the Kraken manual (http://ccb.
jhu.edu/software/kraken/).

Two Benchmark Datasets

Two different benchmark datasets were constructed.
Benchmark dataset I includes complete genomes, and
benchmark dataset II includes simulated draft
genomes. Benchmark dataset I consists of 2,001
Salmonella complete chromosomes from NCBI
GenBank and all NCBI RefSeq plasmids. Benchmark
dataset II was created as follows: One thousand
Salmonella draft genomes were randomly selected from
NCBI GenBank, all draft contig lengths were
obtained, deciles were calculated according to the
lengths, and ten intervals were formed by the deciles.
For each sequence in benchmark dataset I, each time
one interval was randomly selected, an integer value
was randomly selected within the interval. The process
was repeated until the total length exceeded the
sequence length. The sequence was then broken into a
series of sequential fragments according to the selected
integer values. Following this method, each sequence
was fragmented.

Kraken Classifiers Evaluation
Five-fold cross validation was used to evaluate the
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Five-fold cross-validation for the Kraken classifier

FIGURE 1. The building and evaluation flow charts of our Kraken classifier for plasmid sequence prediction. (A) Scheme for
building and evaluating. (B) Details of the Kraken classifier five-fold cross-validation.

Note: The detailed procedure for building and evaluating our kraken classifier is illustrated. Salmonella genomes (Data D),
both chromosomes and plasmids, were divided into five groups. Four groups, together with the National Center for
Biotechnology Information (NCBI) bacterial plasmid database (without Salmonella plasmids) (Data S1) or
Enterobacteriaceae plasmid database (without Salmonella plasmids) (Data S2), were used as training data to build the
Kraken classifier, the remaining group was used as validation data.
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three Kraken classifiers constructed in this study
(Figure 1B). For the NCBI plasmid dataset, the
Salmonella  plasmid and chromosome
sequence were divided into five groups, took out four
groups and added the NCBI plasmid dataset (without
Salmonella plasmids) to construct the training database,
and validated the Kraken classifiers by using the other
group. For the Enterobacteriaceae bacterial plasmid
dataset, the Enterobacteriaceae bacterial plasmid
sequences and chromosome sequences were also
divided into five groups, took out four groups, and
added Enterobacteriaceae bacterial plasmids (without
Salmonella plasmids) to build the training database.
For the Salmonella dataset, the Salmonella plasmid
sequence and chromosome sequence were divided into
five groups, we took out four groups to build the
training database, and validated the classifiers with the
other group.

sequence

The Metrics of the Kraken Classifier

Evaluation

A series of evaluation metrics were used to evaluate
the classifier, including accuracy, precision, recall,
specificity and false predictive value:

Accuracy=(TP+TN)/(TP+TN+FP+FN)

Precision=TP/(TP+FP)

Recall=TP/(TP+FN)

Specificity=TN/(TN+FP)

False predictive value=TN/(TN+FN)

(TP: The number of sequences that were predicted
to be plasmids, and actually were plasmids. FP: The
number of sequences that were predicted to be
plasmids, but actually were not plasmids. TN: The
number of sequences that were predicted to be
chromosomes, and actually were chromosomes. FN:
The number of sequences that were predicted to be
chromosomes, but actually were not chromosomes.)

Plasmid Prediction Based on
PlasmidFinder

plasmid replicon sequence database (72). The
minimum coverage threshold was set to 60% and the
minimum identity threshold was set to 80%.

Statistical analysis and plotting

All  Statistical Analyses were done using R
programming language. The ggridges (https://
wilkelab.org/ggridges/),  ggplot2  (https://ggplot2.

tidyverse.org), and eulerr (https://github.com/jolars/
eulerr) packages were used to generate ridgeline plots,
violin plots, and Venn diagrams. Kolmogorov-Smirnov
test was used to evaluated the distribution differences
between two variables. Fishers exact test was used to
test the proportion difference.

RESULTS

Classifier Evaluation Based on the
Complete Genome Benchmark
Dataset (Benchmark Dataset I)

Evaluation results for the three Kraken classifiers
showed that the third Kraken classifier, C, which was
composed of complete Salmonella genomes and all
NCBI bacterial plasmids, had the highest accuracy
(98.94%) and the highest recall rate (97.67%), with
relatively high precision (99.94%) and specificity
(99.95%). The recall rate and precision of the other

classifiers were lower (Table 1).

Classifier Evaluation Based on the
Simulated Draft Genomes
Benchmark Dataset
(Benchmark Dataset II)

Here, according to Salmonella draft genome contig
length distributions in the NCBI database, the
complete genomes in the benchmark dataset

(benchmark dataset I) were broken into fragments
according to empirical contig distributions to construct

PlasmidFinder is based on an Enterobacteriaceae a simulated draft genome benchmark dataset
TABLE 1. Evaluation results for Kraken classifier-based plasmid sequence prediction.
Dataset Classifier type Accurate Precision Recall Specificity False predictive value
Kraken classifier A 98.41% 100.00% 96.42% 100.00% 98.57%
Benchmark dataset | Kraken classifier B 98.89% 100.00% 97.49% 100.00% 98.96%
Kraken classifier C 98.94% 99.94% 97.67% 99.95% 98.86%
Kraken classifier A 99.20% 99.80% 91.23% 99.65% 99.87%
Benchmark dataset Il Kraken classifier B 99.25% 99.64% 92.38% 99.65% 99.90%
Kraken classifier C 99.28% 99.48% 92.68% 99.66% 99.90%
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(benchmark dataset 1II). The distribution of also relatively higher than the other two Kraken

chromosomal fragment lengths and the distribution of classifiers. Therefore, Kraken classifier C was selected

plasmid fragment lengths in our simulated Salmonella as the optimal Kraken classifier obtained in this study.

draft genome benchmark dataset showed similar

distributions as the distribution of contig lengths in Analysis of Plasmid Carrying Prevalence

1,000 randomly selected Salmonella draft genomes and Plasmid Carrying ARGs for

from GenBank, indicating that our benchmark dataset Salmonella Isolated From China

IT is a good simulation of actual data (Figure 2A). A total of 4,036 draft Salmonella genomes isolated
Results showed that the third Kraken classifier, C, from China were collected from GenBank. Our

which was created from databases based on all bacterial optimal Kraken classifier was then used to predict

plasmids and complete Salmonella genomes in NCBI, plasmid contigs from them. Among all strains 3,673

had the highest accuracy (99.28%). Other metrics were (91.01%) were predicted to have plasmid contigs, with
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FIGURE 2. The application and evaluation of Kraken classifier for Salmonella strains isolated in China. (A) Distribution of
contig lengths of 1,000 randomly selected Salmonella draft genomes compared to the chromosomal and plasmid length
distributions in our simulated draft genome benchmark dataset (benchmark dataset Il). (B) Number of plasmid contigs per
strain for Salmonella with plasmids isolated from China. (C) Total length distribution of plasmid contigs per strain for
Salmonella with plasmids isolated from China. (D) Venn diagram displaying the overlap of strains containing plasmids
predicted by a replicon-based method (PlasmidFinder) and the Kraken classifier. (E) Comparison of the number of ARGs
carried by plasmids predicted by the Kraken classifier and the replicon-based method, respectively. (F) Comparison of the
number of ARGs located in plasmids and those located in the chromosome.

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 4/ No. 49 1113



China CDC Weekly

a median contig number of five [95% confidence
interval (CI): 1-21] for plasmids (Figure 2B), and a
median total plasmid length of 93,740 bp per strain
(95% CI. 4,657-26,7721 bp) (Figure 2C).

To compare the Kraken classifier established in this
study with a conventionally used replicon-based
method, PlasmidFinder was also used to predict
plasmid contigs. Among the 4,036 Salmonella strain
draft genomes, 3,145 strains (72.72%) were predicted
to contain plasmid contigs. Compared with
PlasmidFinder, our Kraken classifier discovered that
another 556 strains harbor plasmids, while the
replicon-based method found 24 strains that our
Kraken classifier did not (Figure 2D). Among these 24
strains, four strains had very long (>4 Mb) contigs,
which may be due to the integration of plasmids into
chromosomes. Additionally, contigs carrying replicons
in the other 20 strains are quite short (<5 kb) and
harbor extensive mobile genetic elements, making it
difficult to distinguish whether these contigs belong to
chromosomes or plasmids, or are the result of
assembling error.

Simultaneously, the predictive ability to discover
ARGs between the replicon-based method and the

Kraken classifier was compared and it was found that

the replicon-based method evaluated the median
number of plasmid-borne ARGs to be zero (95% CI:
0-5). The Kraken classifier assessed the median
number of ARGs carried by plasmids to be three (95%
CI: 0-14), which is significantly different (P value
<0.001, (Figure 2E),
suggesting the Kraken classifier established in this
study can predict more ARGs carried on plasmids than
other methods.

Using our Kraken classifier predictor, the median
number of chromosome-carrying ARGs of each strain
was one (95% CI: 1-7), and the median number of
plasmid-borne ARGs was three (95% CI: 1-14). This
is a significant difference in ARG distribution between
chromosomes and plasmids in these Salmonella
strains (P value <0.001, Kolmogorov-Smirnov test)
(Figure 2F).

Quinolone and third-generation cephalosporins are
commonly used antibiotics in clinics. ARGs can be
carried on chromosome and plasmids in Salmonella.
Here, our Kraken classifier was used to predict
chromosomal and plasmid locations of these ARGs in
4,036 Salmonella strains. It was found that 1.88% of
the strains have the acquired quinolone-related
resistance genes on chromosomes, while 11.90% of the

Kolmogorov-Smirnov  test)

TABLE 2. Comparison of quinolone and third-generation cephalosporin-related ARGs prediction results.

Number of
Number of Number of ARGs Number of ARGs isolated
Antibiotic type ARG ARGs isolated on ARGs isolated on both Undefined P value
chromosome on plasmids chromosome
and plasmids
qnrA 4 0 4 0 0 0.02
qnrB 182 0 182 0 0 <0.001
qnrD 3 0 3 0 0 0.06
qnrS 1,054 19 778 2 259 <0.001
Quinolone qnrvC 4 0 4 0 0 0.02
resistance qepA 29 0 29 0 0 <0.001
aac(6')-1b-cr 942 76 299 3 570 <0.001
0gxA 797 13 221 0 563 <0.001
ogxB 798 13 225 0 560 <0.001
qnrS 1,054 19 778 2 259 <0.001
blaTEM 1,607 94 838 7 682 <0.001
blaCTX-M 863 192 408 17 280 <0.001
. . blaOXA 854 80 205 2 571 <0.001
Third-generation
cephalosporins blaCMY 27 1 23 1 4 <0.001
resistance blaDHA 24 0 2 0 0 <0.001
blaNDM 10 2 0 0 0.02
blaSHV 5 0 5 0 0 0.01

Abbreviation: ARGs=antibiotic resistance genes.
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strains carry acquired quinolone-related resistance
genes on plasmids. Besides 7.71% of the strains carry
third-generation cephalosporin-related resistance genes
on chromosomes, while 62.61% of the strains carry the
gene on plasmids (Table 2). The number of strains
carrying quinolone-related resistance genes or the
acquired  third-generation  cephalosporin-related
resistance genes on plasmids is significantly higher than
that carrying the corresponding resistance genes on
chromosomes (P value <0.001, Fisher's exact test).

DISCUSSION

The Kraken classifier can be a useful tool in
metagenomic species identification because of its ultra-
fast speed and high accuracy (7). Kraken-based plasmid
prediction methods demonstrated the highest accuracy
and F1 score (an evaluation metric for the performance
of a machine learning model) compared to other
methods  (Centrifuge, ~RFPlasmid,  mlplasmids,
PlaScope, and Platon), with balanced sensitivity and
specificity (13). Our results also show that our Kraken
classifier has high accuracy, precision, and sensitivity
when applied to the prediction of plasmid sequences
carried by Salmonella. Furthermore, our optimal
Kraken classifier, built with all NCBI bacterial
plasmids and Salmonella complete genomes, proved to
be an ideal method for Salmonella plasmid sequence
prediction.

In our study, three kinds of customized Kraken
databases were used to construct three different Kraken
classifiers. It is challenging to choose the ideal database.
It was found that the Kraken classifier based on NCBI
bacterial plasmids and Salmonella complete genome
data had the highest prediction accuracy and could be
used as an optimal customized Kraken database for
Salmonella plasmid prediction.

The optimal Kraken classifier was used to predict the
plasmid sequences from Salmonella strains isolated
from China and it was found that 91.01% of these
strains carried plasmids. PlasmidFinder is a traditional
and easy-to-use tool for plasmid sequence and type
detection that relies on the fact that most plasmids
have identifiable replicon sequences (/4). However,
finding plasmid contigs containing undiscovered
replicons with replicon-based methods is quite
difficule. In this study, plasmid contigs from
Salmonella  sequences isolated from China were
predicted and it was found that our Kraken classifier
could find more strains that carried plasmids than

Chinese Center for Disease Control and Prevention

plasmid-based replicon methods,
Kraken classifier we established in this study would be

suggesting  the

a useful tool for determining plasmid contigs in
bacterial draft sequences. Those plasmid contigs not
detected by our Kraken classifier may be due to the
integration of plasmids into the chromosomes or the
presence of a large number of MGE-related genes.

Plasmids are an important reservoir of ARGs and a
vector of resistance transmission (75). Our newly
developed Kraken classifier can find more plasmid
contigs than the existing methods, and, therefore, can
find more ARGs carried on plasmids. In Salmonella
strains isolated from China, the number of plasmid-
borne ARGs was higher than that of chromosomes-
carrying ARGs. Currently, obtaining an entire
complete sequence  remains
challenging. It was expected that the Kraken classifier
developed in this study will become crucial for
monitoring ARGs in the future.
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