Epidemiological Insights into Foodborne Pathogens Through qPCR Exploration of Prevalence — Beijing Municipality, China, January 2022–April 2023

Penghang Zhang¹; Xiaochen Ma¹; Yuzhu Liu¹; Tongyu Wang¹; Shuning Huo²; Xiaoai Zhang^{1,#}

Summary

What is already known on this topic?

Foodborne diseases present a substantial global health risk. Traditional diagnostic methods have constraints, but advancements in molecular techniques, like quantitative polymerase chain reaction (qPCR), provide a hopeful solution.

What is added by this report?

We examined 1,011 stool samples from individuals suspected of foodborne illnesses. Our analysis indicated a significant presence of *Clostridium perfringens*, *Salmonella enterica*, enterotoxigenic *Escherichia coli* (ETEC), and adenovirus. Notably, co-infections were identified in 71.22% of the samples.

What are the implications for public health practice?

The data emphasize a notable prevalence of coinfections, highlighting the complexity of foodborne illnesses. This study underscores the significance of utilizing contemporary diagnostic methods in densely populated urban areas such as Beijing Municipality.

Foodborne illnesses pose a persistent threat to global health, commonly manifesting as acute gastroenteritis due to infections spread via contaminated food or water (1). With the increasing globalization and complexity of our food networks, there is an imperative need for rapid and precise pathogen detection methods (2-3). This is especially true in Beijing Municipality, where the distinctive demography and environmental factors underscore the importance of employing advanced diagnostic techniques (4-6). In our investigation, we collected 1,011 stool specimens from patients with presumed foodborne illnesses at 28 health facilities within the city. Utilizing quantitative polymerase chain reaction (qPCR), we identified and enumerated 35 different foodborne pathogens. The findings revealed a significant incidence of *Clostridium perfringens*,

Salmonella enterica, enterotoxigenic Escherichia coli (ETEC), and adenovirus. Remarkably, 71.22% of the samples exhibited multiple concurrent infections. It is crucial for public health officials to consider cultureindependent diagnostic tests (CIDTs) for disease identification and the prevalence of co-infections, which will notably improve the monitoring, prevention, and management of foodborne diseases in metropolitan areas. From January 2022 to April 2023, we amassed a total of 1,011 stool specimens from patients diagnosed with foodborne diseases in 28 different hospitals across Beijing. These patients were identified as having a foodborne disease based on symptoms that included recurring watery stool, mucusladen or bloody stool, or vomiting, occurring three or more times within a 24-hour span, and reported as potentially linked to food consumption. We categorized patients by age: children (≤ 5 years old), adolescents (6-17 years old), adults (18-64 years old), and seniors (≥ 65 years old).

Each patient provided a fresh fecal sample weighing 5 mg, preserved in Cary-Blair transport medium CM0935 (Oxoid, Basingstoke, Hampshire, United Kingdom) at 4 °C. The samples were then transported to a designated laboratory within 24 hours for nucleic acid extraction. Nucleic acids were extracted from the fecal samples at the laboratory using a rapid nucleic acid extraction instrument NE-02-K-96 (Guangzhou Baybio Bio-tech Co., Ltd. Guangzhou, Guangdong, China) and a commercially available extraction kit STNM-48-K (Guangzhou Baybio Bio-tech Co., Ltd. Guangzhou, Guangdong, China). Detection of foodborne pathogens was carried out using single qPCR, with specific primers and probes obtained from literature or custom-designed for this study. Details of the pathogens detected, along with their primer and probe sequences, qPCR cycling conditions, and templates are listed in Supplementary Table S1 (available at https://weekly.chinacdc.cn/).

Statistical analysis was conducted using SPSS

software (version 20.0; IBM SPSS, Chicago, IL, USA). The frequencies of different pathogens among patients in various age groups were compared using χ^2 and Fisher's exact tests for dichotomous variables. A *P*-value of <0.05 was considered statistically significant.

A total of 1,011 eligible stool samples were collected, and nucleic acid extraction was successful for all samples. The detection rate for foodborne pathogens overall was 92.48% (935/1,011).

Clostridium perfringens had the highest positivity rate at 52.03% among the samples analyzed (Figure 1A), followed by *Salmonella enterica*, ETEC, and adenovirus with rates of 20.67%, 20.97%, and 19.88%, respectively. Enteropathogenic *Escherichia coli* (EPEC) and enteroaggregative *Escherichia coli* (EAEC) were also prevalent, detected in 19.49% and 15.13% of the samples. Pathogens found in 5% to 15% of the samples included Staphylococcus aureus (S. aureus), Campylobacter jejuni, Bacteroides fragilis, Clostridium difficile, rotavirus, Vibrio parahaemolyticus, Escherichia Shigella/Enteroinvasive coli. (EIEC), Cronobacter spp., Aeromonas spp., norovirus, and Vibrio cholerae. Co-infections were present in 71.22% (720/1,011) of the samples (Table 1). Most infections involved one, two, or three pathogens, with rare cases having up to nine pathogens detected. Some cases of co-infections involved seven to nine pathogens, as detailed in Table 1 along with the onset time of these cases. Pathogen combinations for all samples are presented in Table 1. Pathogens were undetectable in 7.52% of the samples.

In spring, the prevalence of S. aureus was relatively

FIGURE 1. Prevalence of 35 pathogens in patients with acute diarrhea from Beijing. (A) Frequency distribution of 35 pathogens detected among 1,011 patients with acute diarrhea; (B) Seasonal distribution of *Staphylococcus aureus*, *Aeromonas* spp., and norovirus in 1,011 patients with acute diarrhea.

Abbreviation: ETEC=enterotoxigenic *Escherichia coli*; EPEC=enteropathogenic *Escherichia coli*; EAEC=enteroaggregative *Escherichia coli*; STEC=Shiga toxin-producing *Escherichia coli*; EIEC=Enteroinvasive *Escherichia coli*.

TABLE 1. Results of 1,011 stool samples from patients with foodborne diseases showing co-infections and infection pattern	s
with 7–9 pathogens based on quantitative PCR experiments.	

Pattern of infections	Time of onset	Cases (%)
Nonuple infections		2 (0.20)
Cronobacter spp. + Clostridium perfringens + STEC O157:H7 + STEC + Clostridium difficile + Salmonella enterica + EAEC + ETEC + adenovirus	Aug-22	
Clostridium perfringens + rotavirus + Salmonella enterica + EPEC + Cystoisospora belli + Vibrio parahaemolyticus + Yersinia enterocolitica + ETEC + adenovirus	Aug-22	
Octuple infections		4 (0.40)
Cronobacter spp. + Staphylococcus aureus + Clostridium perfringens + sapovirus + Bacteroides fragilis + Campylobacter coli + Yersinia enterocolitica + ETEC	Sep-22	
Staphylococcus aureus + Clostridium perfringens + STEC 0157:H7 + STEC + Campylobacter jejuni + Vibrio parahaemolyticus + Yersinia enterocolitica + adenovirus	Sep-22	
costinatum perinigens + totavitus + Samonena enterica + vibro cholerae + EAEC + Campyiobacter coli + ETEC + norovirus	Aug-22	
Clostridium perfringens + Clostridium difficile + Salmonella enterica + Campylobacter jejuni + Vibrio parahaemolyticus + Yersinia enterocolitica + ETEC + adenovirus	Oct-22	
Septuple infections		8 (0.79)
Cronobacter spp. + Clostridium perfringens + Salmonella enterica + EPEC + Plesiomonas shigelloides + Yersinia enterocolitica + ETEC	Sep-22	
Cronobacter spp. + Clostridium perfringens + Campylobacter coli + Cystoisospora belli + Vibrio parahaemolyticus + ETEC + adenovirus	Aug-22	
Staphylococcus aureus + Clostridium perfringens + Aeromonas spp. + Clostridium difficile + Salmonella enterica + EAEC + Cyclospora cayetanensis	May-22	
Staphylococcus aureus + Clostridium perfringens + EAEC + Campylobacter jejuni + Vibrio	Oct-22	
Clostridium perfringens + rotavirus + Salmonella enterica + Vibrio cholerae + EPEC + ETEC +	Aug-22	
Clostridium perfringens + Aeromonas spp. + Clostridium difficile + EAEC + EPEC + Campylobacter jejuni + ETEC	Oct-22	
Clostridium perfringens + Shigella/EIEC + EAEC + EPEC + Arcobacter skirrowii + Arcobacter cryaerophilus + adenovirus	Aug-22	
<i>Clostridium perfringens</i> + EAEC + <i>Campylobacter jejuni</i> + <i>Vibrio parahaemolyticus</i> + ETEC + adenovirus + norovirus	Oct-22	
Sextuple infections		24 (2.37)
Quintuple infections		64 (6.33)
Quadruple infections		147 (14.54)
Triple infections		211 (20.87)
Duple infections		260 (25.72)
Single infection		215 (21.27)
Negative		76 (7.52)
Total		1,011

Abbreviation: PCR=polymerase chain reaction; ETEC=enterotoxigenic *Escherichia coli*; EPEC=enteropathogenic *Escherichia coli*; EAEC= enteroaggregative *Escherichia coli*; STEC=Shiga toxin-producing *Escherichia coli*; EIEC=Enteroinvasive *Escherichia coli*.

low, increasing from summer onwards to peak at 33.33% in December (Figure 1B). *Aeromonas* spp. exhibited a higher positive rate during winter, whereas norovirus showed increased rates in winter and spring, except for December due to limited samples. Seasonal variations were not observed in other pathogens.

An analysis of pathogen positivity rates across different age groups revealed significant differences (Figure 2). Notably, children showed a higher positivity rate for adenovirus compared to adolescents and the elderly. EPEC presented elevated positivity rates in both children and adults when contrasted with elderly populations. *S. aureus* was more frequently

detected in children and adolescents rather than in adult and elderly groups. *C. difficile* displayed increased positivity in both children and elderly individuals relative to adults. In contrast, *V. cholerae* was less commonly identified in children than in adults, and *C. coli* was found to have lower positivity rates in children as opposed to the other three age cohorts.

DISCUSSION

In this study, we performed multipathogen testing on stool specimens from 1,011 individuals presenting

FIGURE 2. Isolation rates (%) of six pathogens across different age groups: (A) adenovirus, (B) ETEC, (C) Staphylococcus aureus, (D) Clostridium difficile, (E) Vibrio cholerae, (F) Campylobacter coli.

Note: Because age data was missing for some patients during data collection, only 883 samples were included in this analysis.

* P<0.05.

** *P*<0.01.

*** *P*<0.001.

with foodborne illness in Beijing to characterize the prevalence and diversity of pathogens implicated. Our analysis revealed a notable incidence of coinfections, which underscores the specific challenges and food safety vulnerabilities faced by the city. We observed a considerably high positivity rate for C. perfringens. However, this finding warrants a careful interpretation. Although traditionally associated with the consumption of improperly cooked or stored meats, C. perfringens has been found in 21.2%-36.0% of healthy individuals (7). Therefore, while the detection of C. perfringens is of interest, it does not invariably suggest a pathogenic role in each instance. This finding highlights the critical need to differentiate between true pathogens and commensal organisms within the gastrointestinal tract, offering insights for future efforts to identify bona fide pathogens.

The significant positivity rates for Salmonella

enterica, ETEC, and adenovirus align with findings from other surveillance studies (ϑ), indicating broad contamination sources, likely spanning from water sources to diverse food items. Elevated adenovirus detection in children underscores their susceptibility, highlighting the need for precise identification of adenovirus serotypes and tailored preventive measures in environments where children are commonly present (ϑ).

The variations in seasonal patterns, including the increase in *S. aureus* rates from summer to December and the elevated rates of *Aeromonas* spp. and norovirus in winter and spring, highlight potential environmental triggers or behavioral patterns that could impact these trends.

Differences in pathogen prevalence across age groups are crucial for understanding disease prevention. Higher adenovirus rates in children may indicate age-

388

specific exposure or susceptibility. A study of 1,715 children demonstrated a high adenovirus positivity rate (10). Variances in *C. difficile* and other pathogen positivity rates by age imply age-related vulnerabilities or exposure routes.

The significant prevalence of coinfections raises interesting inquiries. When various pathogens are present in one host, identifying the main contributing pathogen to the clinical symptoms is difficult. It is crucial to investigate whether one pathogen is predominantly responsible for the symptomatic manifestation or if the combined effects of multiple pathogens worsen the severity of the disease. Unraveling this intricate interaction is a key focus for future research endeavors.

The study demonstrates the diverse diagnostic capabilities of qPCR-based molecular technology. It is suggested to integrate qPCR into pathogen surveillance for foodborne diseases and utilize it alongside epidemiological and clinical data to effectively inform public health interventions and policy modifications concerning foodborne disease surveillance.

This study is subject to some limitations. The analysis was solely reliant on CIDTs, and over half of the collected samples originated from adult participants, resulting in a lower representation of other age groups. Additionally, the sample collection intervals were not consistently distributed.

Despite these constraints, the sample sizes were adequate to identify trend patterns. To the best of our understanding, this is the most extensive survey of its kind conducted in China to date. We plan to extend our sample collection efforts and conduct concordance assessments between CIDT results and traditional culture methods. Furthermore, we will investigate the prevalence of various pathogenic sequences, including Clostridium perfringens, using metagenomic Our future work will also involve sequencing. contrasting the gut microbiota community structures of individuals with foodborne illnesses and those in good health, with the aim of informing more sophisticated strategies for the prevention and management of foodborne diseases.

Conflicts of interest: No reported conflicts.

Acknowledgements: Thank the Beijing Changping, Chaoyang, Daxing, Fangshan, Fengtai, Haidian, Huairou, Mentougou, Shijingshan, and Xicheng Centers for Disease Control and Prevention for providing fecal samples.

Funding: Supported by the Capital High-level Public Health Technical Talent Development Project (2022-3-027).

doi: 10.46234/ccdcw2024.075

[#] Corresponding author: Xiaoai Zhang, zhangxiaoai_0922@163.com.

Submitted: December 01, 2023; Accepted: March 27, 2024

REFERENCES

- Li HQ, Li WW, Dai Y, Jiang YY, Liang JH, Wang ST, et al. Characteristics of settings and etiologic agents of foodborne disease outbreaks-China, 2020. China CDC Wkly 2021;3(42):889 – 93. https: //doi.org/10.46234/ccdcw2021.219.
- Cheng H, Zhao J, Zhang J, Wang ZY, Liu ZT, Ma XC, et al. Attribution analysis of household foodborne disease outbreaks in China, 2010-2020. Foodborne Pathog Dis 2023;20(8):358 – 67. https://doi. org/10.1089/fpd.2022.0070.
- Niu YL, Wang TY, Zhang XA, Guo YC, Zhang YW, Wang C, et al. Risk factors for sporadic listeriosis in Beijing, China: a matched casecontrol study. Epidemiol Infect 2022;150:e62. https://doi.org/10.1017/ S0950268821002673.
- Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, et al. A laboratory-developed TaqMan array card for simultaneous detection of 19 enteropathogens. J Clin Microbiol 2013;51(2):472 – 80. https://doi. org/10.1128/JCM.02658-12.
- Hu PW, Liu CY, Ruan JW, Yuan M, Ju CY, Ma YP, et al. FilmArray GI-panel performance for the rapid and multiple detection of gastrointestinal microorganisms in foodborne illness outbreaks in Shenzhen during 2018–2019. Infect Genet Evol 2020;86:104607. https://doi.org/10.1016/j.meegid.2020.104607.
- 6. Liu J, Gratz J, Amour C, Nshama R, Walongo T, Maro A, et al. Optimization of quantitative PCR methods for enteropathogen detection. PLoS One 2016;11(6):e0158199. https://doi.org/10.1371/ journal.pone.0158199.
- Kiu R, Hall LJ. An update on the human and animal enteric pathogen *Clostridium perfringens*. Emerg Microbes Infect 2018;7(1):1 – 15. http:// /dx.doi.org/10.1038/s41426-018-0144-8.
- Fleckenstein JM, Matthew Kuhlmann F, Sheikh A. Acute bacterial gastroenteritis. Gastroenterol Clin North Am 2021;50(2):283 – 304. https://doi.org/10.1016/j.gtc.2021.02.002.
- 9. Shieh WJ. Human adenovirus infections in pediatric population-An update on clinico-pathologic correlation. Biomed J 2022;45(1):38 49. https://doi.org/10.1016/j.bj.2021.08.009.
- Platts-Mills JA, Liu J, Rogawski ET, Kabir F, Lertsethtakarn P, Siguas M, et al. Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: a reanalysis of the MAL-ED cohort study. Lancet Glob Health 2018;6(12):e1309 – 18. https://doi.org/10.1016/S2214-109X(18)30349-8.

¹ Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning; Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, China; ² Yanjing Medical College of Capital Medical University, Beijing, China.

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE S1. Primer and probe sequences for quantitative PCR in this study.

Pathogen	Gene	Strand	Sequence	Reference	genbank code	product size (bp)
Cronobacter spp.		Forward	TGGTACGCAGGTGGCAAA		0	
	ompA	Reverse	GGGCCGTCGTTAGGAATAAA	(1)	KU354278.1	68
		Probe	TTGGTCCCAGTTCCACGATACCGG			
		Forward	GTTTTTCTATTTCGCTACTAGTTGTTTAGTG			
Staphylococcus	nuc	Reverse	CACTATATACTGTTGGATCTTCAGAACCA	(1)	LS483319.1	134
aureus		Probe	TCAGCAAATGCATCACAAACAGATAATGGC			
		Forward	AGGATTCTATGACACRGCTACT			
Bacillus cereus	crs2	Reverse	GATKACCTGTACTAYCAGAAGT	This study	AB248763.2	159
		Probe	TGACTTAGATGCSGCGAAATACCTTGC			
		Forward	CTTTGCTGCATAATCYCAA			
Clostridium	plc	Reverse	CTGCTAATGTTASTGCCGTT	This study	MK180795.1	257
perinigens		Probe	TCATCCYAACTATGACTCMTGCTAGC			
		Forward	CGCCAAYCAAGATCCTMA			
E.coli O157	rfbE	Reverse	GTCCACACGWTGCCAATG	This study	CP114132.1	68
		Probe	CGGAAAAATATCAAAAGCACSCTATRGC			
		Forward	GCCTGTCTACCATKCAGAAC			
Aeromonas	Aerolysin	Reverse	GCTCTYGCGGCATTMG	This study	MT491733.1	215
spp.		Probe	ACCTGGCCAGAGTGCTGCGC			
		Forward	GGGACAAGGATTCTACCAGCTTTATA			
Bacteroides	bft	Reverse	ATTCGGCAATCTCATTCATCATT	(2)	AB026626.1	126
nagiiis		Probe	CAATGGCGAATCCATCAG			
		Forward	GGGTGCTGTTATAKGTCGT			
Campylobacter	gyrA	Reverse	AAGACATCAGGTTCRCTTTCT	This study	KP159411.1	267
jejum		Probe	CATGAGAAAGYTTACTCATTTTTGC			
		Forward	GCGAGTGMTTATGCTCGTA			
Campylobacter	glyA	Reverse	TCCAGCAATGTGTKCAAYG	This study	AF136494.1	99
con		Probe	TAGAGRGATTGCGGATGAAGYTGGAGC			
		Forward	GGTATTACCTAATGCTCCAAATAG			
Clostridium difficile	tcdB	Reverse	TTTGTGCCATCATTTTCTAAGC	(2)	MN625141.1	87
annone		Probe	CCTGGTGTCCATCCTGTTTC			
		Forward	CTTCAAGSAGAAATAGWGCAC		KC292125.1	275
Clostridium	tcdA	Reverse	TAGCTGTAATGCTTCAGYGGTA	This study		
annone		Probe	TGGATAGGTKGAGAAGTCAGTGAKATTGCTC	;		
Helicobacter pylori		Forward	GTGCTAGATACCGYTAATGG			
	ure	Reverse	CTGTCAGCATSGCCATCA	This study	OL906288.1	206
		Probe	TGCGGCTTATAAGRTGGCTCCRG			
		Forward	CGCAATCAGTGAAGGGRA			
Listeria monocytogenes	hly	Reverse	GCCATATGCCACACTTGMGAT	This study	MG922920.1	187
		Probe	AGCAGTTGCWAGCGCTTGGAGTG			

Continued						
Pathogen	Gene	Strand	Sequence	Reference	genbank code	product size (bp)
		Forward	GGGTAGCAGACCTCACCTATG			
Mycobacterium tuberculosis	orfB	Reverse	AGCGTAGGCGTCGGTGA	(2)	MH883892.1	74
		Probe	TCGCCTACGTGGCCTTT			
		Forward	CGTGATTGATACGGSACGTAGTA			
Plesiomonas	glmU	Reverse	GGATCACCMAATTCAGAKCATC	This study	CP076372.1	113
Singeneraee		Probe	TCGGTGCCGAAARTATCCATCTGATCTAC			
		Forward	GGCTATTCTCKGCACCTT			
Salmonella	ttrC	Reverse	TCCTGGTGAGTCCSTTCA	This study	CP126323.1	77
emenea		Probe	CGGCCTGTGGATAGCGCTACTGA			
		Forward	ACCGCTAACGCTCGCCTGTAT			
Salmonella	ompC	Reverse	CGGGTTGCGTTATAGGTCTGA	(2)	CP055130.1	122
enterica		Probe	AATACTGCGCTGCCAGAT			
		Forward	CGATCAGTACCAGTCGTYTT			
Salmonella	invA	Reverse	CAGGCTATCGCCAATAMCG	This study	CP121298.1	89
entenca		Probe	CTTGATTGAASCCGATGCYGGT			
		Forward	CCTTTTCCGCGTTCCTTGA			
Shigella/EIEC	ipaH	Reverse	CGGAATCCGGAGGTATTGC	(2)	CP130064.1	64
-		Probe	CGCCTTTCCGATACCGTCTCTGCA	.,		
		Forward	ATCGTCAGTTTGGAGCCAGT			
Vibrio cholerae	hlyA	Reverse	TCGATGCGTTAAACACGAAG	(2)	MF100000.1	102
	,	Probe	ACCGATGCGATTGCCCAA			
		Forward	GCGGAGAGWCCAARCGAAGT			
Vibrio parahaemolvtic	toxR	Reverse	ACTCKGGAGATTTGGTTGAATC	This study	MH047287.1	148
us		Probe	TGGCGTGAGCAAGGTTWTGAGGTGGAT	· · · · · ,		
		Forward	GCAGATAGCAGACMTGCATYCT			
Yersinia	cadR	Reverse	GGTATTSCTGCTGGTGAATCAA	This study	LR134161.1	215
enterocolitica		Probe	AACACTAAGGTGAACGGGCTGACGCTA			
		Forward	TGACATTATCCAWGCRGTTGTTG			
Arcobacter	feoB	Reverse	GAGTGAAAATCCAGATGAACSAA	This study	CP060692 1	208
cryaerophilus		Probe	ACAAGRTATTTCCATCSTCCAGCTT			
		Forward				
Arcobacter	nadB	Reverse		This study	CP032099 1	199
skirrowii		Prohe	CCAAATCSGCCACTTGCTAAAATTKTATTGTG	1	0.002000	
		Forward	GCAATTGATAGAGCTYGTGAA			
Arcobacter	alvA	Reverse	ACTCCATAATAGMATGCTTGRT	This study	AF136498 1	209
butzleri	9.97	Prohe		The study	AI 130490.1	209
		Forward	GCACAGGCAGGATTASAACA			
OTE O	sta	Reverse		This study	KV581502 1	227
SILC	314	Probo		This study	11301392.1	221
		Fibbe				
STEC	otv1	Poyoraa		This study	00785750 4	155
SIEC	5171	Prohe	TGTCTGGTGACASTACCTATACCACKTTACA	This Study	UF/03/30.1	100
		FIDDE	I U U U U U U U U U U U U U U U U U U U			

Continued		_				
Pathogen	Gene	Strand	Sequence	Reference	genbank code	product size (bp)
		Forward	GCTGATGCYGACGATWCTGT			
EAEC	aggR	Reverse	GTGTWTCTGACSTTATCGGAA	This study	MT471349.1	173
		Probe	AGAGTCAATTTATATATCGGCTGTRAGCTTCT	Г		
		Forward	GCGAATACTGGCSAGWCTA			
EPEC	eae	Reverse	GATTCGMCTGCAACTTATCG	This study	LC504610.1	227
		Probe	AGTAGCGTTAACGGCTATTTCCKC			
		Forward	TGACGCTTACCASGTYGGAT			
EPEC	bfpA	Reverse	TAACACCGTAGCCTTTCGCT	This study	AF304485.1	84
		Probe	AGCGGCATGTSTTAGTCTTRCAACCTTG			
		Forward	GGCAGAGGATKGTTMCAGAT			
ETEC	eltA	Reverse	AATCCAGGGTTCTTCTCTSCAA	This study	KF733767.1	70
		Probe	AGCAGGTTTCCCACCGGATCACCAA			
		Forward	CGGTACAAGCAGGATWACAAC			
ETEC	estA	Reverse	ACCTTTCSCTCAGGATGCTA	This study	AJ868113.1	161
		Probe	CAGCAGTAATTGCTACYATTCATGC			
		Forward	CCACATCGGTGTCTGTTATTAACC			
STEC	stx2	Reverse	GGTCAAAACGCGCCTGATAG	(2)	AP025741.1	93
		Probe	TTGCTGTGGATATACGAGG			
		Forward	CTCTCGCCCTGCGAAGTAA			
Adenovirus F	fiber	Reverse	GGCGTCTATTAAKAGRGAAAGT	This study	MK854763.1	137
		Probe	TACAACGCTSCCTTAAACGTAG			
		Forward	GTTGRCGGAGAGGGCTWCAA			
Adenovirus C	hexon	Reverse	GCATCTGWACCAAGAACMAKTCT	This study	MH322276.1	67
		Probe	CGTTGCCCMATGCAACAYGAC	,		
		Forward	TCAGATGATGATGATGTTGAGAAC			
Astrovirus	capsid	Reverse	CCAACAGGTCRTTGTAGACACT	This study	OQ633093.1	154
		Probe	AGGAATGTCAGTGGAKCGCGSCACAAG			
		Forward	CAGGCCRTGTTCCGCYSGAT			
Norovirus GI	capsid	Reverse	TCCTTAGACGCCATSATCAWTTAC	This study	AB058529 1	99
		Probe	TGTGGACAGGGSATCGYGATCT			
		Forward	AGGTTAATGCTWCTGAYCCTCTT			
Norovirus GL1	cansid	Reverse	CTTGKGGAGCCTRCWCAAA	This study	KP753266 1	126
	oupoid	Prohe		The etady	14 100200.1	120
		Forward				
Norovirus GII	RdRn	Reverse		This study	MK280938 1	146
	Ruitp	Prohe	TGAAGCCICISTICACGBACCCI	This Study	WIR200000.1	140
		Forward				
Noroviruo CII 4	DdDn	Boyoroo		This study	ME159170 1	102
Norovirus Gil.4	кикр	Droho		This study	INIF 156179.1	102
		Fille				
Doto:	NODA	Poward			01000740 4	07
Rotavirus	N943	Reverse		(2)	UN992748.1	٥/
		Probe	AGTTAAAAGCTAACACTGTCAAA			

Continued						
Pathogen	Gene	Strand	Sequence	Reference	genbank code	product size (bp)
Sapovirus		Forward	ATGCTTMACAWCATKGACCT			
	RdRp	Reverse	CTGTASCASCTATGAACCAAG	This study	MN245682.1	144
		Probe	TGTGTTTGACACCGTRCGCCAAAT			
		Forward	CCAAGGYAGTSTAACACCAT		XM_001388121.1	262
Cryptosporidiu m parvum	819-1080	Reverse	AGCATCATCTKATGAACTMCAAGT	This study		
		Probe	CGATTGTTRACCTTCWTCCTGTTCACT			
		Forward	GCACARGATCGAGAWTCTAATG			
Cyclospora cavetanensis	3859-4084	Reverse	GCAACAATCGAKTCCATAGTCAA	This study	NW_020312297.1	226
		Probe	TGACGGCCTKTGATGCACCTWGCCG			
		Forward	CAGTSTCTCTGAAGTTTCWAGTTC			
Cystoisospora belli	5.8S rRNA	Reverse	TTCGGGACACAACTCRACRCT	This study	MT835288.1	189
<i>2</i> 0 <i>m</i>		Probe	CTCACGSGCTTCTGGRGGTGTCTCT			
		Forward	GACGATCAGTAGCCGACTT			
bacterial 16s	16S rRNA	Reverse	GCTTCTTAGTCAAGTACCGTCA	(2)	MT356186.1	199
		Probe	AGAGAGTGATCGGCCACATTGGGA			
	MS2g1	Forward	TGGCACTACCCCTCTCCGTATTCAC		LC710218.1	99
MS2		Reverse	GTACGGGCGACCCCACGATGAC	(2)		
		Probe	CACATCGATAGATCAAGGTGCCTACAAGC			
		Forward	GGGCGAATCACAGATTGAATC			
PhHV	gB	Reverse	GCGGTTCCAAACGTACCAA	(2)	Z68147.1	89
		Probe	TATGTGTCCGCCACCATCT			

Abbreviation: PCR=polymerase chain reaction; ETEC=enterotoxigenic *Escherichia coli*; EPEC=enteropathogenic *Escherichia coli*; EAEC= enteroaggregative *Escherichia coli*; STEC=Shiga toxin-producing *Escherichia coli*; EIEC=Enteroinvasive *Escherichia coli*; MS2= bacteriophage MS2; PhHV=Phocine Herpesvirus.

REFERENCES

1. Wang JF, Wang JC, Zhang W, Yang Q, Chen QY. Simultaneous rapid detection of 8 kinds of foodborne bacteria by GNM C7-8 real-time PCR. J Food Saf Qual 2018;9(9):2090 – 5.https://doi.org/10.3969/j.issn.2095-0381.2018.09.018.

2. Liu J, Gratz J, Amour C, Nshama R, Walongo T, Maro A, et al. Optimization of quantitative PCR methods for enteropathogen detection. PLoS One 2016;11(6):e0158199. https://doi.org/10.1371/journal.pone.0158199.

S4