Supplementary Material

Statistical models

As a consequence, a total of 6 models were developed. Model I included only ecological measures (temperature, temperature variation, and rainfall) as explanatory variables; Model II included only social factors (education, internet use, population density, and poverty) as covariates; Model III included both ecological and social factors as explanatory variables; Model IV incorporated spatially structured random effects with all socioecological covariates; Model V incorporated spatially unstructured random effects with all socioecological covariates; Model VI incorporated both structured and unstructured random effects with all socioecological covariates.

The expected log relative risk θ_k , for these models thus represented as follows:

$\theta_k = \alpha + (\text{Temp}_k) \beta_1 + (\text{Tempva}_k) \beta_2 + (\text{Rain}_k) \beta_3$
$\theta_k = \alpha + (Edu_k) \beta_1 + (Int_k) \beta_2 + (povi_k) \beta_3 + (pop_k) \beta_4.$ Model II
$\theta_k = \alpha + (\text{Temp}_k) \beta_1 + (\text{Tempva}_k) \beta_2 + (\text{Rain}_k) \beta_3 + (\text{Edu}_k) \beta_4 + (\text{Int}_k) \beta_5 + (\text{povi}_k) \beta_6 + (\text{pop}_k) \beta_7 \dots Model III$
$\theta_k = \alpha + (\text{Temp}_k) \beta_1 + (\text{Tempva}_k) \beta_2 + (\text{Rain}_k) \beta_3 + (\text{Edu}_k) \beta_4 + (\text{Int}_k) \beta_5 + (\text{povi}_k) \beta_6 + (\text{pop}_k) \beta_7 + u_k$ Model IV
$\theta_k = \alpha + (\text{Temp}_k) \beta_1 + (\text{Tempva}_k) \beta_2 + (\text{Rain}_k) \beta_3 + (\text{Edu}_k) \beta_4 + (\text{Int}_k) \beta_5 + (\text{povi}_k) \beta_6 + (\text{pop}_k) \beta_7 + v_k$ Model V
$\theta_k = \alpha + (\text{Temp}_k) \beta_1 + (\text{Tempva}_k) \beta_2 + (\text{Rain}_k) \beta_3 + (\text{Edu}_k) \beta_4 + (\text{Int}_k) \beta_5 + (\text{povi}_k) \beta_6 + (\text{pop}_k) \beta_7 + u_k + v_k + \dots Model VI$
where α is a constant, β_1 is the coefficient for temperature, β_2 is the coefficient for temperature variation, β_3 is
the coefficient for rainfall, β_4 is the coefficient for percentage of education at district level, β_5 is the coefficient for
percentage of internet user at district level, β_6 is percentage of poverty at district level, and β_7 is the population
density per square kilometer, v_k is a spatially unstructured random effect that is assumed to be normally distributed
with mean zero and variance σ_{ν}^2 and u_k is spatially structured random effect that was modeled using a conditional
autoregressive (CAR) prior $u_k \sim N(\bar{u}_{\sim k}, \sigma_u^2/n_k)$, where $\sim k$ denotes the neighbors of the kth district based on a simple
adjacency matrix and n_k is the corresponding number of neighbors.

SUPPLEMENTARY TABLE S1. Spearman correlation between pneumonia and socioecological covariates in Children Under Five-Years Old — Bangladesh, 2012–2016.

	Variables	1	2	3	4	5	6	7	8
1	Pneumonia	-							
2	Temperature	0.094							
3	Temperature variation	0.161	0.235						
4	Rainfall	-0.019	0.268*	-0.146					
5	Education	0.008	-0.011	-0.129	0.068				
6	Internet use	0.126	0.063	0.223	0.017	-0.066			
7	Population density	-0.148	-0.25*	-0.276*	0.028	0.075	0.162		
8	Poverty	0.069	-0.14	0.163	-0.077	0.095	-0.209	-0.336*	-

Note: - represnt its pneumonia itself, there will be no number.

SUPPLEMENTARY TABLE S2. Descriptive statistics of childhood pneumonia and different socioecological factors — Bangladesh, 2012–2016.

Variables	Mean ± SD	Range
Pneumonia	747.82 ± 245.32	355.53-1612.10
Temperature (°C)	30.97 ± 0.48	29.50-31.98
Temperature variation (°C)	3.63 ± 0.55	2.00-4.99
Rain (mm)	164.54 ± 101.37	3.13-386.96
Education (%)	54.66 ± 7.75	37.50-73.70
Internet use (%)	0.62 ± 0.76	0.14-6.03
Poverty incidence (%)	27.45 ± 15.31	2.60-70.80
Under five years population density (per square km)	117.72 ± 87.05	10.81-656.54

^{*} P<0.05.

China CDC Weekly

SUPPLEMENTARY TABLE S3. Model comparison for relative risk of monthly childhood pneumonia, underlying socioecological factors, and different random effects — Bangladesh, 2012–2016.

Model	Random effect	Deviance Information Criterion (DIC)	Effective number of parameters (pD)
Model I	No	19954.20	30.146
Model II	No	17382.41	5.001
Model III	No	13773.00	11.134
Model IV	и	665.98	63.940
Model V	v	665.67	63.812
Model VI	u and v	665.47	63.719

SUPPLEMENTARY TABLE S4. List of high-risk districts of Bangladesh for childhood pneumonia from 2012 to 2016.

Name of the district	Relative Risk (95% Credible interval)	Location	
Rangamati	5.97 (5.63-6.31)	South-eastern	
Pirojpur	4.71 (4.48-4.93)	South-western	
Jhalkathi	4.38 (4.09-4.66)	South-western	
Jaipurhut	3.95 (3.70-4.19)	North-eastern	
Bandarbon	3.77 (3.48-4.07)	South-eastern	
Meherpur	3.50 (3.23-3.78)	South-western	
Rajbari	3.31(3.11-3.50)	Central	
Khagrachari	3.25 (3.02-3.49)	South-eastern	
Panchagarh	2.96 (2.78-3.14)	Northern	