[1] Xie WL, Shi Q, Zhang J, Zhang BY, Gong HS, Guo Y, et al. Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K. J Mol Neurosci 2013;51(3):919 − 32. http://dx.doi.org/10.1007/s12031-013-0002-zCrossRef
[2] Shi Q, Xie WL, Zhang BY, Chen LN, Xu Y, Wang K, et al. Brain microglia were activated in sporadic CJD but almost unchanged in fatal familial insomnia and G114V genetic CJD. Virol J 2013;10:216. http://dx.doi.org/10.1186/1743-422X-10-216CrossRef
[3] Xie WL, Shi Q, Xia SL, Zhang BY, Gong HS, Wang SB, et al. Comparison of the pathologic and pathogenic features in six different regions of postmortem brains of three patients with fatal familial insomnia. Int J Mol Med 2013;31(1):81 − 90. http://dx.doi.org/10.3892/ijmm.2012.1194CrossRef
[4] Shi Q, Zhang BY, Gao C, Han J, Wang GR, Chen C, et al. The diversities of PrPSc distributions and pathologic changes in various brain regions from a Chinese patient with G114V genetic CJD. Neuropathology 2012;32(1):51 − 9. http://dx.doi.org/10.1111/j.1440-1789.2011.01237.xCrossRef
[5] Ma Y, Shi Q, Xiao K, Wang J, Chen C, Gao LP, et al. Stimulations of the culture medium of activated microglia and TNF-alpha on a scrapie-infected cell line decrease the cell viability and induce marked necroptosis that also occurs in the brains from the patients of human prion diseases. ACS Chem Neurosci 2019;10(3):1273 − 83. http://dx.doi.org/10.1021/acschemneuro.8b00354CrossRef
[6] Dong CF, Wang XF, Wang X, Shi S, Wang GR, Shan B, et al. Molecular interaction between prion protein and GFAP both in native and recombinant forms in vitro. Med Microbiol Immunol 2008;197(4):361 − 8. http://dx.doi.org/10.1007/s00430-007-0071-0CrossRef
[7] Wang K, Zhang J, Xu Y, Ren K, Xie WL, Yan YE, et al. Abnormally upregulated αB-crystallin was highly coincidental with the astrogliosis in the brains of scrapie-infected hamsters and human patients with prion diseases. J Mol Neurosci 2013;51(3):734 − 48. http://dx.doi.org/10.1007/s12031-013-0057-xCrossRef
[8] Lv Y, Chen C, Zhang BY, Xiao K, Wang J, Chen LN, et al. Remarkable activation of the complement system and aberrant neuronal localization of the membrane attack complex in the brain tissues of scrapie-infected rodents. Mol Neurobiol 2015;52(3):1165 − 79. http://dx.doi.org/10.1007/s12035-014-8915-2CrossRef
[9] Chen C, Lv Y, Hu C, Xu XF, Zhang RQ, Xiao K, et al. Alternative complement pathway is activated in the brains of scrapie-infected rodents. Med Microbiol Immunol 2020;209(1):81 − 94. http://dx.doi.org/10.1007/s00430-019-00641-6CrossRef
[10] Chen C, Xiao D, Zhou W, Shi Q, Zhang HF, Zhang J, et al. Global protein differential expression profiling of cerebrospinal fluid samples pooled from Chinese sporadic CJD and non-CJD patients. Mol Neurobiol 2014;49(1):290 − 302. http://dx.doi.org/10.1007/s12035-013-8519-2CrossRef
[11] Chen C, Lv Y, Shi Q, Zhou W, Xiao K, Sun J, et al. Low activity of complement in the cerebrospinal fluid of the patients with various prion diseases. Infect Dis Poverty 2016;5:35. http://dx.doi.org/10.1186/s40249-016-0128-7CrossRef
[12] Chen J, Chen C, Hu C, Liu L, Xia Y, Wang L, et al. IP10, KC and M-CSF are remarkably increased in the brains from the various strains of experimental mice infected with different scrapie agents. Virol Sin 2020;35(5):614 − 25. http://dx.doi.org/10.1007/s12250-020-00216-3CrossRef
[13] Xu Y, Tian C, Wang SB, Xie WL, Guo Y, Zhang J, et al. Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 2012;8(11):1604 − 20. http://dx.doi.org/10.4161/auto.21482CrossRef
[14] Xu Y, Tian C, Sun J, Zhang J, Ren K, Fan XY, et al. FBXW7-Induced MTOR degradation forces autophagy to counteract persistent prion infection. Mol Neurobiol 2016;53(1):706 − 19. http://dx.doi.org/10.1007/s12035-014-9028-7CrossRef
[15] Fan XY, Tian C, Wang H, Xu Y, Ren K, Zhang BY, et al. Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci Rep 2015;5:14728. http://dx.doi.org/10.1038/srep14728CrossRef
[16] Gao LP, Xiao K, Wu YZ, Chen DD, Yang XH, Shi Q, et al. Enhanced mitophagy activity in prion-infected cultured cells and prion-infected experimental mice via a pink1/parkin-dependent mitophagy pathway. ACS Chem Neurosci 2020;11(5):814 − 29. http://dx.doi.org/10.1021/acschemneuro.0c00039CrossRef
[17] Chen C, Xu XF, Zhang RQ, Ma Y, Lv Y, Li JL, et al. Remarkable increases of α1-antichymotrypsin in brain tissues of rodents during prion infection. Prion 2017;11(5):338 − 51. http://dx.doi.org/10.1080/19336896.2017.1349590CrossRef
[18] Guo YJ, Shi Q, Yang XD, Li JL, Ma Y, Xiao K, et al. Increases of galectin-1 and its s-nitrosylated form in the brain tissues of scrapie-infected rodent models and human prion diseases. Mol Neurobiol 2017;54(5):3707 − 16. http://dx.doi.org/10.1007/s12035-016-9923-1CrossRef
[19] Shi Q, Wu YZ, Yang XH, Xiao K, Maimaitiming A, Gao LP, et al. Significant enhanced expressions of aquaporin-1, -4 and -9 in the brains of various prion diseases. Prion 2019;13(1):173 − 84. http://dx.doi.org/10.1080/19336896.2019.1660487CrossRef
[20] Zhang J, Wang K, Guo Y, Shi Q, Tian C, Chen C, et al. Heat shock protein 70 selectively mediates the degradation of cytosolic PrPs and restores the cytosolic PrP-induced cytotoxicity via a molecular interaction. Virol J 2012;9:303. http://dx.doi.org/10.1186/1743-422X-9-303CrossRef
[21] Liu YH, Han YL, Song J, Wang Y, Jing YY, Shi Q, et al. Heat shock protein 104 inhibited the fibrillization of prion peptide 106-126 and disassembled prion peptide 106-126 fibrils in vitro. Int J Biochem Cell Biol 2011;43(5):768 − 74. http://dx.doi.org/10.1016/j.biocel.2011.01.022CrossRef
[22] Xu Y, Zhang J, Tian C, Ren K, Yan YE, Wang K, et al. Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way. Med Microbiol Immunol 2014;203(2):73 − 84. http://dx.doi.org/10.1007/s00430-013-0316-zCrossRef
[23] Wang H, Tian C, Fan XY, Chen LN, Lv Y, Sun J, et al. Polo-like kinase 3 (PLK3) mediates the clearance of the accumulated PrP mutants transiently expressed in cultured cells and pathogenic PrPSc in prion infected cell line via protein interaction. Int J Biochem Cell Biol 2015;62:24 − 35. http://dx.doi.org/10.1016/j.biocel.2015.02.011CrossRef
[24] Wang H, Tian C, Sun J, Chen LN, Lv Y, Yang XD, et al. Overexpression of PLK3 mediates the degradation of abnormal prion proteins dependent on chaperone-mediated autophagy. Mol Neurobiol 2017;54(6):4401 − 13. http://dx.doi.org/10.1007/s12035-016-9985-0CrossRef