[1]
|
Maloof MA. Learning when data sets are imbalanced and when costs are unequal and unknown. In: ICML-2003 workshop on learning from imbalanced data sets II. Washington: ICLM. 2003. https://www.site.uottawa.ca/~nat/Workshop2003/maloof-icml03-wids.pdf.https://www.site.uottawa.ca/~nat/Workshop2003/maloof-icml03-wids.pdf |
[2]
|
Breiman L. Bagging predictors. Mach Learn 1996;24(2):123-40. http://dx.doi.org/10.1023/A:1018054314350CrossRef
|
[3]
|
Liang G, Zhang C. Empirical study of bagging predictors on medical data. In: Conferences in research and practice in information technology series. Ballarat, Australia: OPUS. 2010; p. 31-400 https://opus.lib.uts.edu.au/handle/10453/19124. |
[4]
|
Dudoit S, Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 2003;19(9):1090-9. http://dx.doi.org/10.1093/bioinformatics/btg038CrossRef
|
[5]
|
Cox DR. Regression models and life-tables. J Roy Stat Soc B Methodol 1972;34(2):187-220. http://dx.doi.org/10.1111/j.2517-6161.1972.tb00899.xCrossRef
|
[6]
|
Cox DR. Partial likelihood. Biometrika 1975;62(2):269-76. http://dx.doi.org/10.1093/biomet/62.2.269CrossRef
|
[7]
|
Zou H, Hastie T. Regularization and variable selection via the elastic net. J Roy Stat Soc B StatMethodol 2005;67(2):301-20. http://dx.doi.org/10.1111/j.1467-9868.2005.00503.xCrossRef
|
[8]
|
Gui J, Li HZ. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 2005;21(13):3001-8. http://dx.doi.org/10.1093/bioinformatics/bti422CrossRef
|
[9]
|
Bao HL, Liu LY, Fang LW, Cong S, Fu ZT, Tang JL, et al. The Breast Cancer Cohort Study in Chinese Women: the methodology of population-based cohort and baseline characteristics. Chin J Epidemiol 2020;41(12):2040-5. http://dx.doi.org/10.3760/cma.j.cn112338-20200507-00695 (In Chinese). CrossRef
|
[10]
|
Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989;81(24):1879-86. http://dx.doi.org/10.1093/jnci/81.24.1879CrossRef
|
[11]
|
Chen HL, Huang CC, Yu XG, Xu X, Sun X, Wang G, et al. An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst Appl 2013;40(1):263-71. http://dx.doi.org/10.1016/j.eswa.2012.07.014CrossRef
|
[12]
|
Mohan S, Thirumalai C, Srivastava G. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 2019;7:81542-54. http://dx.doi.org/10.1109/ACCESS.2019.2923707CrossRef
|
[13]
|
Yu W, Liu TB, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inf Decis Making 2010;10(1):16. http://dx.doi.org/10.1186/1472-6947-10-16CrossRef
|
[14]
|
Alelyani S. Stable bagging feature selection on medical data. J Big Data 2021;8(1):11. http://dx.doi.org/10.1186/S40537-020-00385-8CrossRef
|
[15]
|
Han YT, Lv J, Yu CQ, Guo Y, Bian Z, Hu YZ, et al. Development and external validation of a breast cancer absolute risk prediction model in Chinese population. Breast Cancer Res 2021;23(1):62. http://dx.doi.org/10.1186/s13058-021-01439-2CrossRef
|