[1] WHO. Plague. Wkly Epidemiol Rec 2005;80(15):138-40. https://pubmed.ncbi.nlm.nih.gov/15875712/.
[2] Stenseth NC, Samia NI, Viljugrein H, Kausrud KL, Begon M, Davis S, et al. Plague dynamics are driven by climate variation. Proc Natl Acad Sci USA 2006;103(35):13110 − 5. https://doi.org/10.1073/pnas.0602447103CrossRef
[3] Pham HV, Dang DT, Tran Minh NN, Nguyen ND, Nguyen TV. Correlates of environmental factors and human plague: an ecological study in Vietnam. Int J Epidemiol 2009;38(6):1634 − 41. https://doi.org/10.1093/ije/dyp244CrossRef
[4] Xu L, Liu QY, Stige LC, Ben Ari T, Fang XY, Chan KS, et al. Nonlinear effect of climate on plague during the third pandemic in China. Proc Natl Acad Sci USA 2011;108(25):10214 − 9. https://doi.org/10.1073/pnas.1019486108CrossRef
[5] Wang X, Wei XY, Song ZZ, Wang ML, Xi JX, Liang JR, et al. Mechanism study on a plague outbreak driven by the construction of a large reservoir in southwest China (surveillance from 2000-2015). PLoS Negl Trop Dis 2017;11(3):e0005425. https://doi.org/10.1371/journal.pntd.0005425CrossRef
[6] He ZK, Wei BQ, Zhang YJ, Liu J, Xi JX, Ciren D, et al. Distribution and characteristics of human plague cases and Yersinia pestis isolates from 4 Marmota plague foci, China, 1950-2019. Emerg Infect Dis 2021;27(10):2544 − 53. https://doi.org/10.3201/eid2710.202239CrossRef
[7] Tang DM, Duan R, Chen YH, Liang JR, Zheng XJ, Qin S, et al. Plague outbreak of a Marmota himalayana family emerging from hibernation. Vector Borne Zoonotic Dis 2022;22(8):410 − 8. https://doi.org/10.1089/vbz.2022.0010CrossRef
[8] Wang YM, Zhou L, Fan MG, Wang QY, Li JY, Li Q, et al. Isolated cases of plague - Inner Mongolia-Beijing, 2019. China CDC Wkly 2019;1(1):13 − 6. https://doi.org/10.46234/ccdcw2019.005CrossRef
[9] Abedi AA, Shako JC, Gaudart J, Sudre B, Ilunga BK, Shamamba SKB, et al. Ecologic features of plague outbreak areas, democratic republic of the Congo, 2004-2014. Emerg Infect Dis 2018;24(2):210 − 20. https://doi.org/10.3201/eid2402.160122CrossRef
[10] Wang DS, Ge PF, Xi JX, Su YQ, Xu DQ, Gai YZ, et al. Non-linear effects of meteorological factors on plague epidemics in the plague foci of Subei and Sunan counties of Gansu Province. Chin J Endemiol 2020;39(1):27 − 32. https://doi.org/10.3760/cma.j.issn.2095-4255.2020.01.006CrossRef
[11] Xi JX, Duan R, He ZK, Meng L, Xu DQ, Chen YH, et al. First case report of human plague caused by excavation, skinning, and eating of a hibernating marmot ( Marmota himalayana). Front Public Health 2022;10:910872. https://doi.org/10.3389/fpubh.2022.910872CrossRef
[12] Gage KL. Factors affecting the spread and maintenance of plague. In: De Almeida AMP, Leal NC, editors. Advances in Yersinia research. New York: Springer. 2012; p. 79-94. http://dx.doi.org/10.1007/978-1-4614-3561-7_11.
[13] Schmid BV, Büntgen U, Easterday WR, Ginzler C, Walløe L, Bramanti B, et al. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc Natl Acad Sci USA 2015;112(10):3020 − 5. https://doi.org/10.1073/pnas.1412887112CrossRef
[14] Xu L, Schmid BV, Liu J, Si XY, Stenseth NC, Zhang ZB. The trophic responses of two different rodent-vector-plague systems to climate change. Proc Biol Sci 2015;282(1800):20141846. https://doi.org/10.1098/rspb.2014.1846CrossRef
[15] Ju C, Liu ZC, Zhang GJ, Yao XH, Xu C, Duan TY, et al. Relationship between human plague epidemic and meteorological factors in China. Chin J Endemiol 2014;33(5):488 − 91. https://doi.org/10.3760/cma.j.issn.2095-4255.2014.05.005CrossRef