[1] Qu PK, Xu K, Faraone JN, Goodarzi N, Zheng YM, Carlin C, et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA. 2.86 and FLip variants. Cell 2024;187(3):585 − 95.e6. https://doi.org/10.1016/j.cell.2023.12.026CrossRef
[2] Rasmussen M, Møller FT, Gunalan V, Baig S, Bennedbæk M, Christiansen LE, et al. First cases of SARS-CoV-2 BA.2.86 in Denmark, 2023. Euro Surveill 2023;28(36):2300460. http://dx.doi.org/10.2807/1560-7917.ES.2023.28.36.2300460.
[3] Looi MK. Covid-19: scientists sound alarm over new BA. 2.86 "Pirola" variant. BMJ 2023;382:1964. https://doi.org/10.1136/bmj.p1964CrossRef
[4] Wang Q, Guo YC, Liu LY, Schwanz LT, Li ZT, Nair MS, et al. Antigenicity and receptor affinity of SARS-CoV-2 BA. 2.86 spike. Nature 2023;624(7992):639 − 44. https://doi.org/10.1038/s41586-023-06750-wCrossRef
[5] Wannigama DL, Amarasiri M, Phattharapornjaroen P, Hurst C, Modchang C, Chadsuthi S, et al. Tracing the new SARS-CoV-2 variant BA. 2.86 in the community through wastewater surveillance in Bangkok, Thailand. Lancet Infect Dis 2023;23(11):e464 − 6. https://doi.org/10.1016/S1473-3099(23)00620-5CrossRef
[6] Li YH, Du C, Lv ZQ, Wang FX, Zhou LP, Peng YJ, et al. Longitudinal wastewater surveillance addressed public health priorities during the transition from “dynamic COVID-zero” to “opening up” in China: a population-based study. medRxiv 2023. http://dx.doi.org/10.1101/2023.03.25.23287563.
[7] Zheng XW, Wang MY, Deng Y, Xu XQ, Lin DX, Zhang YL, et al. A rapid, high-throughput, and sensitive PEG-precipitation method for SARS-CoV-2 wastewater surveillance. Water Res 2023;230:119560. https://doi.org/10.1016/j.watres.2022.119560CrossRef
[8] Karthikeyan S, Levy JI, De Hoff P, Humphrey G, Birmingham A, Jepsen K, et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 2022;609(7925):101 − 8. https://doi.org/10.1038/s41586-022-05049-6CrossRef
[9] Faltin B, Wadle S, Roth G, Zengerle R, von Stetten F. Mediator probe PCR: a novel approach for detection of real-time PCR based on label-free primary probes and standardized secondary universal fluorogenic reporters. Clin Chem 2012;58(11):1546 − 56. https://doi.org/10.1373/clinchem.2012.186734CrossRef
[10] Huang QY, Chen DM, Du C, Liu QQ, Lin S, Liang LL, et al. Highly multiplex PCR assays by coupling the 5'-flap endonuclease activity of Taq DNA polymerase and molecular beacon reporters. Proc Natl Acad Sci USA 2022;119(9):e2110672119. https://doi.org/10.1073/pnas.2110672119CrossRef
[11] Schoen ME, Bidwell AL, Wolfe MK, Boehm AB. United States influenza 2022-2023 season characteristics as inferred from wastewater solids, influenza hospitalization, and syndromic data. Environ Sci Technol 2023;57(49):20542 − 50. https://doi.org/10.1021/acs.est.3c07526CrossRef
[12] Jahn K, Dreifuss D, Topolsky I, Kull A, Ganesanandamoorthy P, Fernandez-Cassi X, et al. Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC. Nat Microbiol 2022;7(8):1151 − 60. https://doi.org/10.1038/s41564-022-01185-xCrossRef
[13] Bar-Or I, Weil M, Indenbaum V, Bucris E, Bar-Ilan D, Elul M, et al. Detection of SARS-CoV-2 variants by genomic analysis of wastewater samples in Israel. Sci Total Environ 2021;789:148002. https://doi.org/10.1016/j.scitotenv.2021.148002CrossRef
[14] Brito AF, Semenova E, Dudas G, Hassler GW, Kalinich CC, Kraemer MUG, et al. Global disparities in SARS-CoV-2 genomic surveillance. Nat Commun 2022;13(1):7003. https://doi.org/10.1038/s41467-022-33713-yCrossRef
[15] Xu XQ, Deng Y, Ding JH, Zheng XW, Li SX, Liu L, et al. Real-time allelic assays of SARS-CoV-2 variants to enhance sewage surveillance. Water Res 2022;220:118686. https://doi.org/10.1016/j.watres.2022.118686CrossRef
[16] Yan T, Xu Y, Zheng RR, Zeng XH, Chen ZH, Lin S, et al. Accessible and adaptable multiplexed real-time PCR approaches to identify SARS-CoV-2 variants of concern. Microbiol Spectr 2022;10(5):e0322222. https://doi.org/10.1128/spectrum.03222-22CrossRef